Liqiao Xia, Pai Zheng, Jinjie Li, Wangchujun Tang, Xiangying Zhang
{"title":"隐私保护梯度增强树:用于协同轴承故障诊断的垂直联邦学习","authors":"Liqiao Xia, Pai Zheng, Jinjie Li, Wangchujun Tang, Xiangying Zhang","doi":"10.1049/cim2.12057","DOIUrl":null,"url":null,"abstract":"<p>Data-driven fault diagnosis approaches have been widely adopted due to their persuasive performance. However, data are always insufficient to develop effective fault diagnosis models in real manufacturing scenarios. Despite numerous approaches that have been offered to mitigate the negative effects of insufficient data, the most challenging issue lies in how to break down the data silos to enlarge data volume while preserving data privacy. To address this issue, a vertical federated learning (FL) model, privacy-preserving boosting tree, has been developed for collaborative fault diagnosis of industrial practitioners while maintaining anonymity. Only the model information will be shared under the homomorphic encryption protocol, safeguarding data privacy while retaining high accuracy. Besides, an Autoencoder model is provided to encourage practitioners to contribute and then improve model performance. Two bearing fault case studies are conducted to demonstrate the superiority of the proposed approach by comparing it with typical scenarios. This present study's findings offer industrial practitioners insights into investigating the vertical FL in fault diagnosis.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 3","pages":"208-219"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12057","citationCount":"8","resultStr":"{\"title\":\"Privacy-preserving gradient boosting tree: Vertical federated learning for collaborative bearing fault diagnosis\",\"authors\":\"Liqiao Xia, Pai Zheng, Jinjie Li, Wangchujun Tang, Xiangying Zhang\",\"doi\":\"10.1049/cim2.12057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data-driven fault diagnosis approaches have been widely adopted due to their persuasive performance. However, data are always insufficient to develop effective fault diagnosis models in real manufacturing scenarios. Despite numerous approaches that have been offered to mitigate the negative effects of insufficient data, the most challenging issue lies in how to break down the data silos to enlarge data volume while preserving data privacy. To address this issue, a vertical federated learning (FL) model, privacy-preserving boosting tree, has been developed for collaborative fault diagnosis of industrial practitioners while maintaining anonymity. Only the model information will be shared under the homomorphic encryption protocol, safeguarding data privacy while retaining high accuracy. Besides, an Autoencoder model is provided to encourage practitioners to contribute and then improve model performance. Two bearing fault case studies are conducted to demonstrate the superiority of the proposed approach by comparing it with typical scenarios. This present study's findings offer industrial practitioners insights into investigating the vertical FL in fault diagnosis.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"4 3\",\"pages\":\"208-219\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12057\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Data-driven fault diagnosis approaches have been widely adopted due to their persuasive performance. However, data are always insufficient to develop effective fault diagnosis models in real manufacturing scenarios. Despite numerous approaches that have been offered to mitigate the negative effects of insufficient data, the most challenging issue lies in how to break down the data silos to enlarge data volume while preserving data privacy. To address this issue, a vertical federated learning (FL) model, privacy-preserving boosting tree, has been developed for collaborative fault diagnosis of industrial practitioners while maintaining anonymity. Only the model information will be shared under the homomorphic encryption protocol, safeguarding data privacy while retaining high accuracy. Besides, an Autoencoder model is provided to encourage practitioners to contribute and then improve model performance. Two bearing fault case studies are conducted to demonstrate the superiority of the proposed approach by comparing it with typical scenarios. This present study's findings offer industrial practitioners insights into investigating the vertical FL in fault diagnosis.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).