基于动态量子的改进的不同到达时间的循环调度算法

ِAbdulnasir Ahmad
{"title":"基于动态量子的改进的不同到达时间的循环调度算法","authors":"ِAbdulnasir Ahmad","doi":"10.33899/edusj.2022.135082.1273","DOIUrl":null,"url":null,"abstract":"Modern operating systems are based on the principle of time-sharing in executing simultaneous operations. Determining the length of the time slice, and the times when processes arrive at the ready queue are problems that affect metrics as the average waiting time (AWT), average turnaround time (ATAT), response time (RT) and the number of context switches (NCS) of the time-sharing round robin RR algorithms. The research aims to propose an algorithm that achieves a short waiting time while maintaining a reasonable response time, which is the most important characteristic of time-sharing algorithms. The Different Arrival-Dynamic Quantum Round Robin (DADQRR) algorithm bases its work on different parameters to adjust the time slice value dynamically. The algorithm has been compared to three other algorithms that are similar in terms of dealing with different arrival times, namely AN, MARR, RR. The algorithm outperformed the three algorithms at range from 6.155% to 31.409% in term of AWT. It achieved an outperformance of 5.924% to 30.850%, considering the TAT. The ranges of outperformance values resulted from the difference in the ranges of arrival times, as well as in the ranges of burst times.","PeriodicalId":33491,"journal":{"name":"mjl@ ltrby@ wl`lm","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Round Robin CPU Scheduling Algorithm with Different Arrival Times Based on Dynamic Quantum\",\"authors\":\"ِAbdulnasir Ahmad\",\"doi\":\"10.33899/edusj.2022.135082.1273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern operating systems are based on the principle of time-sharing in executing simultaneous operations. Determining the length of the time slice, and the times when processes arrive at the ready queue are problems that affect metrics as the average waiting time (AWT), average turnaround time (ATAT), response time (RT) and the number of context switches (NCS) of the time-sharing round robin RR algorithms. The research aims to propose an algorithm that achieves a short waiting time while maintaining a reasonable response time, which is the most important characteristic of time-sharing algorithms. The Different Arrival-Dynamic Quantum Round Robin (DADQRR) algorithm bases its work on different parameters to adjust the time slice value dynamically. The algorithm has been compared to three other algorithms that are similar in terms of dealing with different arrival times, namely AN, MARR, RR. The algorithm outperformed the three algorithms at range from 6.155% to 31.409% in term of AWT. It achieved an outperformance of 5.924% to 30.850%, considering the TAT. The ranges of outperformance values resulted from the difference in the ranges of arrival times, as well as in the ranges of burst times.\",\"PeriodicalId\":33491,\"journal\":{\"name\":\"mjl@ ltrby@ wl`lm\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mjl@ ltrby@ wl`lm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33899/edusj.2022.135082.1273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjl@ ltrby@ wl`lm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/edusj.2022.135082.1273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代操作系统是基于同时执行操作的分时原则。确定时间片的长度和进程到达就绪队列的时间是影响指标的问题,如平均等待时间(AWT)、平均周转时间(ATAT)、响应时间(RT)和分时轮循RR算法的上下文切换(NCS)数量。本研究旨在提出一种算法,在保持合理的响应时间的同时,实现较短的等待时间,这是分时算法最重要的特点。不同到达-动态量子轮询(DADQRR)算法根据不同的参数动态调整时间片值。将该算法与其他三种处理不同到达时间的相似算法进行了比较,即AN, MARR, RR。在AWT方面,该算法优于三种算法,AWT在6.155% ~ 31.409%之间。考虑到TAT,它取得了5.924%至30.850%的优异表现。优异值的范围是由到达时间范围的差异以及突发时间范围的差异造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Round Robin CPU Scheduling Algorithm with Different Arrival Times Based on Dynamic Quantum
Modern operating systems are based on the principle of time-sharing in executing simultaneous operations. Determining the length of the time slice, and the times when processes arrive at the ready queue are problems that affect metrics as the average waiting time (AWT), average turnaround time (ATAT), response time (RT) and the number of context switches (NCS) of the time-sharing round robin RR algorithms. The research aims to propose an algorithm that achieves a short waiting time while maintaining a reasonable response time, which is the most important characteristic of time-sharing algorithms. The Different Arrival-Dynamic Quantum Round Robin (DADQRR) algorithm bases its work on different parameters to adjust the time slice value dynamically. The algorithm has been compared to three other algorithms that are similar in terms of dealing with different arrival times, namely AN, MARR, RR. The algorithm outperformed the three algorithms at range from 6.155% to 31.409% in term of AWT. It achieved an outperformance of 5.924% to 30.850%, considering the TAT. The ranges of outperformance values resulted from the difference in the ranges of arrival times, as well as in the ranges of burst times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
38
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信