{"title":"悬钩子类黄酮3′-羟化酶基因的克隆及功能鉴定","authors":"S. Eom, Jae-Yean Kim, T. Hyun","doi":"10.5073/JABFQ.2018.091.005","DOIUrl":null,"url":null,"abstract":"Rubus coreanus Miquel is a Korean black raspberry used in folk medicine and functional foods. To investigate the biosynthesis pathway of anthocyanin in R. coreanus Miquel, the complete coding sequence of flavonoid 3′-hydroxylase (F3′H), designated as RcMF3′H1, was cloned for the first time using the Korean black raspberry transcriptome library. The deduced amino acid sequence of RcMF3′H1 contained the proline-rich “hinge” region, P450 consensus heme-binding domain, and F3′H-specific motifs. Phylogenetic analysis revealed that RcMF3′H1 was clustered into the same subgroup as other plant F3′Hs. In addition, expression analysis by quantitative real-time PCR revealed the involvement of RcMF3′H1 in methyl jasmonate-mediated anthocyanin biosynthesis. Furthermore, the ability of the RcMF3′H1 gene to complement the Arabidopsis transparent testa 7-1 mutant suggested that RcMF3′H1 encodes the functional F3′H enzyme involved in anthocyanin biosynthesis. Taken together, the cloning and molecular characterization of RcMF3′H1 will facilitate a better insight into the anthocyanin biosynthesis pathway in R. coreanus Miquel.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular cloning and functional characterization of the flavonoid 3′-hydroxylase gene from Rubus coreanus Miquel\",\"authors\":\"S. Eom, Jae-Yean Kim, T. Hyun\",\"doi\":\"10.5073/JABFQ.2018.091.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rubus coreanus Miquel is a Korean black raspberry used in folk medicine and functional foods. To investigate the biosynthesis pathway of anthocyanin in R. coreanus Miquel, the complete coding sequence of flavonoid 3′-hydroxylase (F3′H), designated as RcMF3′H1, was cloned for the first time using the Korean black raspberry transcriptome library. The deduced amino acid sequence of RcMF3′H1 contained the proline-rich “hinge” region, P450 consensus heme-binding domain, and F3′H-specific motifs. Phylogenetic analysis revealed that RcMF3′H1 was clustered into the same subgroup as other plant F3′Hs. In addition, expression analysis by quantitative real-time PCR revealed the involvement of RcMF3′H1 in methyl jasmonate-mediated anthocyanin biosynthesis. Furthermore, the ability of the RcMF3′H1 gene to complement the Arabidopsis transparent testa 7-1 mutant suggested that RcMF3′H1 encodes the functional F3′H enzyme involved in anthocyanin biosynthesis. Taken together, the cloning and molecular characterization of RcMF3′H1 will facilitate a better insight into the anthocyanin biosynthesis pathway in R. coreanus Miquel.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2018.091.005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2018.091.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Molecular cloning and functional characterization of the flavonoid 3′-hydroxylase gene from Rubus coreanus Miquel
Rubus coreanus Miquel is a Korean black raspberry used in folk medicine and functional foods. To investigate the biosynthesis pathway of anthocyanin in R. coreanus Miquel, the complete coding sequence of flavonoid 3′-hydroxylase (F3′H), designated as RcMF3′H1, was cloned for the first time using the Korean black raspberry transcriptome library. The deduced amino acid sequence of RcMF3′H1 contained the proline-rich “hinge” region, P450 consensus heme-binding domain, and F3′H-specific motifs. Phylogenetic analysis revealed that RcMF3′H1 was clustered into the same subgroup as other plant F3′Hs. In addition, expression analysis by quantitative real-time PCR revealed the involvement of RcMF3′H1 in methyl jasmonate-mediated anthocyanin biosynthesis. Furthermore, the ability of the RcMF3′H1 gene to complement the Arabidopsis transparent testa 7-1 mutant suggested that RcMF3′H1 encodes the functional F3′H enzyme involved in anthocyanin biosynthesis. Taken together, the cloning and molecular characterization of RcMF3′H1 will facilitate a better insight into the anthocyanin biosynthesis pathway in R. coreanus Miquel.
期刊介绍:
The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.