{"title":"有限群环面扩展的基本维数","authors":"Z. Reichstein, F. Scavia","doi":"10.14231/ag-2021-023","DOIUrl":null,"url":null,"abstract":"Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Essential dimension of extensions of finite groups by tori\",\"authors\":\"Z. Reichstein, F. Scavia\",\"doi\":\"10.14231/ag-2021-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2021-023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2021-023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Essential dimension of extensions of finite groups by tori
Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.