有限群环面扩展的基本维数

IF 1.2 1区 数学 Q1 MATHEMATICS
Z. Reichstein, F. Scavia
{"title":"有限群环面扩展的基本维数","authors":"Z. Reichstein, F. Scavia","doi":"10.14231/ag-2021-023","DOIUrl":null,"url":null,"abstract":"Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Essential dimension of extensions of finite groups by tori\",\"authors\":\"Z. Reichstein, F. Scavia\",\"doi\":\"10.14231/ag-2021-023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2021-023\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2021-023","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设p是素数,k是特征不同于p的p闭场,并且1→ T→ G→ F→ 1是k上代数群的精确序列,其中T是环面,F是有限p群。在本文中,我们在p.R.Lötscher,M.MacDonald,A.Meyer和第一作者处研究了G的本质维数ed(G;p),证明了min-dim(V)−dim(G)6ed(G);p)6min-dim(W)−dim(G),其中V和W分别在G的p-忠实和p-一般自由k-表示上。在G=F的特殊情况下,我们恢复了N.Karpenko和A.Merkurjev早先证明的ed(F;p)的公式。在F=T的情况下,我们恢复了R.Lötscher等人早先证明的ed(T;p)的公式。在这两种情况下,上面给出的ed(G;p)上的上界和下界一致。总的来说,它们之间存在差距。Lötscher等人推测上限实际上是尖锐的;也就是说,ed(G;p)=min-dim(W)−dim(G),其中W的范围在p-一般自由表示上。我们在F可对角化的情况下证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essential dimension of extensions of finite groups by tori
Let p be a prime, k be a p-closed field of characteristic different from p, and 1→ T → G→ F → 1 be an exact sequence of algebraic groups over k, where T is a torus and F is a finite p-group. In this paper, we study the essential dimension ed(G; p) of G at p. R. Lötscher, M. MacDonald, A. Meyer, and the first author showed that min dim(V )− dim(G) 6 ed(G; p) 6 min dim(W )− dim(G) , where V and W range over the p-faithful and p-generically free k-representations of G, respectively. In the special case where G = F , one recovers the formula for ed(F ; p) proved earlier by N. Karpenko and A. Merkurjev. In the case where F = T , one recovers the formula for ed(T ; p) proved earlier by R. Lötscher et al. In both of these cases, the upper and lower bounds on ed(G; p) given above coincide. In general, there is a gap between them. Lötscher et al. conjectured that the upper bound is, in fact, sharp; that is, ed(G; p) = min dim(W )− dim(G), where W ranges over the p-generically free representations. We prove this conjecture in the case where F is diagonalizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信