{"title":"用不锈钢和纯铜增材制造IH型直线加速器结构","authors":"H. Hähnel, A. Ateş, Benjamin Dedić, U. Ratzinger","doi":"10.3390/instruments7030022","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of an IH-Type Linac Structure from Stainless Steel and Pure Copper\",\"authors\":\"H. Hähnel, A. Ateş, Benjamin Dedić, U. Ratzinger\",\"doi\":\"10.3390/instruments7030022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier.\",\"PeriodicalId\":13582,\"journal\":{\"name\":\"Instruments\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments7030022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7030022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Additive Manufacturing of an IH-Type Linac Structure from Stainless Steel and Pure Copper
Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier.