几乎Ricci平坦5流形的Kummer型构造

Pub Date : 2023-04-13 DOI:10.1007/s10455-023-09900-5
Chanyoung Sung
{"title":"几乎Ricci平坦5流形的Kummer型构造","authors":"Chanyoung Sung","doi":"10.1007/s10455-023-09900-5","DOIUrl":null,"url":null,"abstract":"<div><p>A smooth closed manifold <i>M</i> is called almost Ricci-flat if </p><div><div><span>$$\\begin{aligned} \\inf _g||\\text {Ric}_g||_\\infty \\cdot \\text {diam}_g(M)^2=0 \\end{aligned}$$</span></div></div><p>where <span>\\(\\text {Ric}_g\\)</span> and <span>\\(\\text {diam}_g\\)</span>, respectively, denote the Ricci tensor and the diameter of <i>g</i> and <i>g</i> runs over all Riemannian metrics on <i>M</i>. By using Kummer-type method, we construct a smooth closed almost Ricci-flat nonspin 5-manifold <i>M</i> which is simply connected. It is minimal volume vanishes; namely, it collapses with sectional curvature bounded.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09900-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Kummer-type constructions of almost Ricci-flat 5-manifolds\",\"authors\":\"Chanyoung Sung\",\"doi\":\"10.1007/s10455-023-09900-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A smooth closed manifold <i>M</i> is called almost Ricci-flat if </p><div><div><span>$$\\\\begin{aligned} \\\\inf _g||\\\\text {Ric}_g||_\\\\infty \\\\cdot \\\\text {diam}_g(M)^2=0 \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\text {Ric}_g\\\\)</span> and <span>\\\\(\\\\text {diam}_g\\\\)</span>, respectively, denote the Ricci tensor and the diameter of <i>g</i> and <i>g</i> runs over all Riemannian metrics on <i>M</i>. By using Kummer-type method, we construct a smooth closed almost Ricci-flat nonspin 5-manifold <i>M</i> which is simply connected. It is minimal volume vanishes; namely, it collapses with sectional curvature bounded.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09900-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09900-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09900-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光滑闭流形M被称为几乎Ricci平坦,如果$$\beggin{aligned}\inf_g||\text{Ric}_g||_\infty\cdot\text{diam}_g(M) ^2=0\end{aligned}$$where \(\text{Ric}_g\)和\(\text{diam}_g\)分别表示Ricci张量,g和g的直径在M上的所有黎曼度量上运行。通过使用Kummer型方法,我们构造了一个光滑闭的几乎Ricci平坦的非spin 5-流形M,它是简单连通的。它是最小体积的消失;也就是说,它以截面曲率为界而塌陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kummer-type constructions of almost Ricci-flat 5-manifolds

A smooth closed manifold M is called almost Ricci-flat if

$$\begin{aligned} \inf _g||\text {Ric}_g||_\infty \cdot \text {diam}_g(M)^2=0 \end{aligned}$$

where \(\text {Ric}_g\) and \(\text {diam}_g\), respectively, denote the Ricci tensor and the diameter of g and g runs over all Riemannian metrics on M. By using Kummer-type method, we construct a smooth closed almost Ricci-flat nonspin 5-manifold M which is simply connected. It is minimal volume vanishes; namely, it collapses with sectional curvature bounded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信