一个世界发展动力学数学模型中延迟影响的研究

Q3 Engineering
D. Khusainov, A. Shatyrko, A. Bychkov, Bedrick Puza, V. Novotná
{"title":"一个世界发展动力学数学模型中延迟影响的研究","authors":"D. Khusainov, A. Shatyrko, A. Bychkov, Bedrick Puza, V. Novotná","doi":"10.34229/1028-0979-2021-6-5","DOIUrl":null,"url":null,"abstract":"There is a large number of works devoted to the dynamics of world development. But very few of them have clear abstract mathematical models of the corresponding processes. This work is devoted to further deepening and mathematical abstraction of the study of world development process. The qualitative analysis of linear and modified nonlinear model in the form of systems of inhomogeneous differential equations is carried out. Their steady states are calculated, explicit analytical solutions are presented. For the first time, a model taking into account the time delay factor is proposed, which is written in the form of functional-differential equations with argument deviation. It is shown that with such an introduction to the model of a delayed argument, the system can be reduced to a system of linear inhomogeneous differential equations with constant coefficients without delay, and the stability of the steady state of the system equilibrium under study will be affected only by linear terms of equations without argument deviation. This fact well correlates with the socio-economic interpretation of this problem. In the future, the work will focus on studying the influence of not one but several factors of time lag, when the model is presented as a system of functional-differential equations with several different deviating arguments in equations responsible for the dynamics of a particular process dynamics of world development.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVESTIGATION OF THE IMPACT OF DELAY IN ONE MATHEMATICAL MODEL OF WORLD DEVELOPMENT DYNAMICS\",\"authors\":\"D. Khusainov, A. Shatyrko, A. Bychkov, Bedrick Puza, V. Novotná\",\"doi\":\"10.34229/1028-0979-2021-6-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a large number of works devoted to the dynamics of world development. But very few of them have clear abstract mathematical models of the corresponding processes. This work is devoted to further deepening and mathematical abstraction of the study of world development process. The qualitative analysis of linear and modified nonlinear model in the form of systems of inhomogeneous differential equations is carried out. Their steady states are calculated, explicit analytical solutions are presented. For the first time, a model taking into account the time delay factor is proposed, which is written in the form of functional-differential equations with argument deviation. It is shown that with such an introduction to the model of a delayed argument, the system can be reduced to a system of linear inhomogeneous differential equations with constant coefficients without delay, and the stability of the steady state of the system equilibrium under study will be affected only by linear terms of equations without argument deviation. This fact well correlates with the socio-economic interpretation of this problem. In the future, the work will focus on studying the influence of not one but several factors of time lag, when the model is presented as a system of functional-differential equations with several different deviating arguments in equations responsible for the dynamics of a particular process dynamics of world development.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-6-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-6-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

有大量的著作致力于研究世界发展的动态。但他们中很少有人对相应的过程有明确的抽象数学模型。这项工作致力于对世界发展过程研究的进一步深化和数学抽象。对非齐次微分方程组形式的线性和修正非线性模型进行了定性分析。计算了它们的稳态,给出了显式的解析解。首次提出了一个考虑时滞因子的模型,该模型以带变元偏差的泛函微分方程的形式写成。结果表明,通过引入延迟变元模型,可以将系统简化为一个无延迟的常系数线性非齐次微分方程组,并且所研究的系统平衡的稳态稳定性只受不存在变元偏差的线性方程项的影响。这一事实与对这一问题的社会经济解释密切相关。未来,这项工作将重点研究时滞的影响,而不是一个因素,而是几个因素,当模型被呈现为一个函数微分方程系统时,方程中有几个不同的偏差自变量,这些偏差自变量负责世界发展的特定过程动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATION OF THE IMPACT OF DELAY IN ONE MATHEMATICAL MODEL OF WORLD DEVELOPMENT DYNAMICS
There is a large number of works devoted to the dynamics of world development. But very few of them have clear abstract mathematical models of the corresponding processes. This work is devoted to further deepening and mathematical abstraction of the study of world development process. The qualitative analysis of linear and modified nonlinear model in the form of systems of inhomogeneous differential equations is carried out. Their steady states are calculated, explicit analytical solutions are presented. For the first time, a model taking into account the time delay factor is proposed, which is written in the form of functional-differential equations with argument deviation. It is shown that with such an introduction to the model of a delayed argument, the system can be reduced to a system of linear inhomogeneous differential equations with constant coefficients without delay, and the stability of the steady state of the system equilibrium under study will be affected only by linear terms of equations without argument deviation. This fact well correlates with the socio-economic interpretation of this problem. In the future, the work will focus on studying the influence of not one but several factors of time lag, when the model is presented as a system of functional-differential equations with several different deviating arguments in equations responsible for the dynamics of a particular process dynamics of world development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信