{"title":"将数字表示为两个斐波那契数或卢卡斯数之差","authors":"P. Ray, K. Bhoi","doi":"10.30970/ms.56.2.124-132","DOIUrl":null,"url":null,"abstract":"In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\\in \\{(7,3),(9,1),(9,2),(11,1),(11,2),$ $(11,9),(12,11),(15,10)\\}.$ Further, if $L_{n}$ denotes the $n$-th Lucas number, then $L_{n}-L_{m}$ is a repdigit for $(n,m)\\in\\{(6,4),(7,4),(7,6),(8,2)\\},$ where $n>m.$Namely, the only repdigits that can be expressed as difference of two Fibonacci numbers are $11,33,55,88$ and $555$; their representations are $11=F_{7}-F_{3},\\33=F_{9}-F_{1}=F_{9}-F_{2},\\55=F_{11}-F_{9}=F_{12}-F_{11},\\88=F_{11}-F_{1}=F_{11}-F_{2},\\555=F_{15}-F_{10}$ (Theorem 2). Similar result for difference of two Lucas numbers: The only repdigits that can be expressed as difference of two Lucas numbers are $11,22$ and $44;$ their representations are $11=L_{6}-L_{4}=L_{7}-L_{6},\\ 22=L_{7}-L_{4},\\4=L_{8}-L_{2}$ (Theorem 3).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repdigits as difference of two Fibonacci or Lucas numbers\",\"authors\":\"P. Ray, K. Bhoi\",\"doi\":\"10.30970/ms.56.2.124-132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\\\\in \\\\{(7,3),(9,1),(9,2),(11,1),(11,2),$ $(11,9),(12,11),(15,10)\\\\}.$ Further, if $L_{n}$ denotes the $n$-th Lucas number, then $L_{n}-L_{m}$ is a repdigit for $(n,m)\\\\in\\\\{(6,4),(7,4),(7,6),(8,2)\\\\},$ where $n>m.$Namely, the only repdigits that can be expressed as difference of two Fibonacci numbers are $11,33,55,88$ and $555$; their representations are $11=F_{7}-F_{3},\\\\33=F_{9}-F_{1}=F_{9}-F_{2},\\\\55=F_{11}-F_{9}=F_{12}-F_{11},\\\\88=F_{11}-F_{1}=F_{11}-F_{2},\\\\555=F_{15}-F_{10}$ (Theorem 2). Similar result for difference of two Lucas numbers: The only repdigits that can be expressed as difference of two Lucas numbers are $11,22$ and $44;$ their representations are $11=L_{6}-L_{4}=L_{7}-L_{6},\\\\ 22=L_{7}-L_{4},\\\\4=L_{8}-L_{2}$ (Theorem 3).\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.2.124-132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.2.124-132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Repdigits as difference of two Fibonacci or Lucas numbers
In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\in \{(7,3),(9,1),(9,2),(11,1),(11,2),$ $(11,9),(12,11),(15,10)\}.$ Further, if $L_{n}$ denotes the $n$-th Lucas number, then $L_{n}-L_{m}$ is a repdigit for $(n,m)\in\{(6,4),(7,4),(7,6),(8,2)\},$ where $n>m.$Namely, the only repdigits that can be expressed as difference of two Fibonacci numbers are $11,33,55,88$ and $555$; their representations are $11=F_{7}-F_{3},\33=F_{9}-F_{1}=F_{9}-F_{2},\55=F_{11}-F_{9}=F_{12}-F_{11},\88=F_{11}-F_{1}=F_{11}-F_{2},\555=F_{15}-F_{10}$ (Theorem 2). Similar result for difference of two Lucas numbers: The only repdigits that can be expressed as difference of two Lucas numbers are $11,22$ and $44;$ their representations are $11=L_{6}-L_{4}=L_{7}-L_{6},\ 22=L_{7}-L_{4},\4=L_{8}-L_{2}$ (Theorem 3).