基于矩阵分布的关节寿命建模

IF 0.6 Q4 STATISTICS & PROBABILITY
H. Albrecher, Martin Bladt, Alaric J. A. Müller
{"title":"基于矩阵分布的关节寿命建模","authors":"H. Albrecher, Martin Bladt, Alaric J. A. Müller","doi":"10.1515/demo-2022-0153","DOIUrl":null,"url":null,"abstract":"Abstract Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that were based on a separate estimation of the marginal behavior and the dependence structure through a copula, we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint lifetimes without that separation. We study properties of mIPH class members and provide an adapted estimation procedure that allows for right-censoring and covariate information. We show that initial distribution vectors in our construction can be tailored to reflect the dependence of the random variables and use multinomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illustrations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint lifetime modeling with matrix distributions\",\"authors\":\"H. Albrecher, Martin Bladt, Alaric J. A. Müller\",\"doi\":\"10.1515/demo-2022-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that were based on a separate estimation of the marginal behavior and the dependence structure through a copula, we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint lifetimes without that separation. We study properties of mIPH class members and provide an adapted estimation procedure that allows for right-censoring and covariate information. We show that initial distribution vectors in our construction can be tailored to reflect the dependence of the random variables and use multinomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illustrations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

无环相型(PH)分布在生存分析中一直是一种流行的工具,这得益于它们在衰老过程中不可避免的吸收方面的自然解释。在本文中,我们考虑对关节寿命建模的二元设置的扩展。与以往文献中基于边际行为和依赖结构的单独估计的模型相比,我们提出了一个新的多变量PH (mIPH)类的时间非均匀版本,该模型可以在没有分离的情况下获得关节寿命模型。我们研究了mIPH类成员的性质,并提供了一个适应的估计程序,允许右审查和协变量信息。我们表明,在我们的构造中,初始分布向量可以被定制以反映随机变量的依赖性,并使用多项回归来确定协变量对启动概率的影响。此外,我们还强调了时间不均匀性所带来的所需阶段的灵活性和简洁性。对Frees等人的关节寿命数据集给出了数值说明,其中10个阶段足以达到合理的拟合性能。作为副产品,所提出的方法可以对关节寿命老化机制中的关联进行自然的因果解释,这超出了统计拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint lifetime modeling with matrix distributions
Abstract Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that were based on a separate estimation of the marginal behavior and the dependence structure through a copula, we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint lifetimes without that separation. We study properties of mIPH class members and provide an adapted estimation procedure that allows for right-censoring and covariate information. We show that initial distribution vectors in our construction can be tailored to reflect the dependence of the random variables and use multinomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illustrations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信