移动边缘计算中使用强化学习和马尔可夫决策过程的安全数据卸载

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jitendra Kumar Samriya, Mohit Kumar, Sukhpal Singh Gill
{"title":"移动边缘计算中使用强化学习和马尔可夫决策过程的安全数据卸载","authors":"Jitendra Kumar Samriya,&nbsp;Mohit Kumar,&nbsp;Sukhpal Singh Gill","doi":"10.1002/nem.2243","DOIUrl":null,"url":null,"abstract":"<p>Mobile Internet services are developing rapidly for several applications based on computational ability such as augmented/virtual reality, vehicular networks, etc. The mobile terminals are enabled using mobile edge computing (MEC) for offloading the task at the edge of the cellular networks, but offloading is still a challenging issue due to the dynamism, and uncertainty of upcoming IoT requests and wireless channel state. Moreover, securing the offloading data enhanced the challenges of computational complexities and required a secure and efficient offloading technique. To tackle the mentioned issues, a reinforcement learning-based Markov decision process offloading model is proposed that optimized energy efficiency, and mobile users' time by considering the constrained computation of IoT devices, moreover guarantees efficient resource sharing among multiple users. An advanced encryption standard is employed in this work to fulfil the requirements of data security. The simulation outputs reveal that the proposed approach surpasses the existing baseline models for offloading overhead and service cost QoS parameters ensuring secure data offloading.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"33 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secured data offloading using reinforcement learning and Markov decision process in mobile edge computing\",\"authors\":\"Jitendra Kumar Samriya,&nbsp;Mohit Kumar,&nbsp;Sukhpal Singh Gill\",\"doi\":\"10.1002/nem.2243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mobile Internet services are developing rapidly for several applications based on computational ability such as augmented/virtual reality, vehicular networks, etc. The mobile terminals are enabled using mobile edge computing (MEC) for offloading the task at the edge of the cellular networks, but offloading is still a challenging issue due to the dynamism, and uncertainty of upcoming IoT requests and wireless channel state. Moreover, securing the offloading data enhanced the challenges of computational complexities and required a secure and efficient offloading technique. To tackle the mentioned issues, a reinforcement learning-based Markov decision process offloading model is proposed that optimized energy efficiency, and mobile users' time by considering the constrained computation of IoT devices, moreover guarantees efficient resource sharing among multiple users. An advanced encryption standard is employed in this work to fulfil the requirements of data security. The simulation outputs reveal that the proposed approach surpasses the existing baseline models for offloading overhead and service cost QoS parameters ensuring secure data offloading.</p>\",\"PeriodicalId\":14154,\"journal\":{\"name\":\"International Journal of Network Management\",\"volume\":\"33 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Network Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nem.2243\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2243","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

随着增强/虚拟现实、车载网络等基于计算能力的应用领域的发展,移动互联网业务正在迅速发展。移动终端使用移动边缘计算(MEC)来卸载蜂窝网络边缘的任务,但由于即将到来的物联网请求和无线信道状态的动态性和不确定性,卸载仍然是一个具有挑战性的问题。此外,保护卸载数据增加了计算复杂性的挑战,需要一种安全高效的卸载技术。为了解决上述问题,提出了一种基于强化学习的马尔可夫决策过程卸载模型,该模型考虑了物联网设备的约束计算,优化了能源效率和移动用户的时间,并保证了多用户之间有效的资源共享。该工作采用了先进的加密标准来满足数据安全的要求。仿真结果表明,该方法优于现有的基线模型,在卸载开销和服务成本QoS参数方面保证了数据的安全卸载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Secured data offloading using reinforcement learning and Markov decision process in mobile edge computing

Secured data offloading using reinforcement learning and Markov decision process in mobile edge computing

Mobile Internet services are developing rapidly for several applications based on computational ability such as augmented/virtual reality, vehicular networks, etc. The mobile terminals are enabled using mobile edge computing (MEC) for offloading the task at the edge of the cellular networks, but offloading is still a challenging issue due to the dynamism, and uncertainty of upcoming IoT requests and wireless channel state. Moreover, securing the offloading data enhanced the challenges of computational complexities and required a secure and efficient offloading technique. To tackle the mentioned issues, a reinforcement learning-based Markov decision process offloading model is proposed that optimized energy efficiency, and mobile users' time by considering the constrained computation of IoT devices, moreover guarantees efficient resource sharing among multiple users. An advanced encryption standard is employed in this work to fulfil the requirements of data security. The simulation outputs reveal that the proposed approach surpasses the existing baseline models for offloading overhead and service cost QoS parameters ensuring secure data offloading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信