木质纤维素降解魏茨曼凝固剂通过强化生物处理产生对映体l -乳酸

IF 3.3 3区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Punnita Pamueangmun, A. Abdullahi, M. Kabir, Kridsada Unban, Apinun Kanpiengjai, J. Venus, K. Shetty, C. Saenjum, C. Khanongnuch
{"title":"木质纤维素降解魏茨曼凝固剂通过强化生物处理产生对映体l -乳酸","authors":"Punnita Pamueangmun, A. Abdullahi, M. Kabir, Kridsada Unban, Apinun Kanpiengjai, J. Venus, K. Shetty, C. Saenjum, C. Khanongnuch","doi":"10.3390/fermentation9080761","DOIUrl":null,"url":null,"abstract":"Second-generation lactic acid production requires the development of sustainable and economically feasible processes and renewable lignocellulose biomass as a starting raw material. Weizmannia coagulans MA42 was isolated from a soil sample in Chiang Mai province, Thailand and showed the highest production of L-lactic acid and lignocellulolytic enzymes (cellulase, β-mannanase, xylanase, β-glucosidase, β-mannosidase, and β-xylosidase) compared to other isolates. Weizmannia coagulans MA42 was able to grow, secrete lignocellulolytic enzymes, and directly produce L-lactic acid in the medium containing various lignocellulosic feedstocks as the sole carbon source. Moreover, L-lactic acid production efficiency was improved after the substrates were pretreated with diluted sulfuric acid and diluted sodium hydroxide. The highest L-lactic acid production efficiency of 553.4 ± 2.9, 325.4 ± 4.1, 326.6 ± 4.4, 528.0 ± 7.2, and 547.0 ± 2.2 mg/g total available carbohydrate was obtained from respective pretreated substrates including sugarcane bagasse, sugarcane trash, corn stover, rice straw, and water hyacinth. It is suggested that structural complexity of the lignocellulosic materials and properties of lignocellulolytic enzymes are the key factors of consolidated bioprocessing (CBP) of lignocellulosic feedstocks to lactic acid. In addition, the results of this study indicated that W. coagulans MA42 is a potent bacterial candidate for CBP of a variety of lignocellulosic feedstocks to L-lactic acid production; however, further bioprocess development and genetic engineering technique would provide higher lactic acid production efficiency, and this would lead to sustainable lactic acid production from lignocellulosic feedstocks.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lignocellulose Degrading Weizmannia coagulans Capable of Enantiomeric L-Lactic Acid Production via Consolidated Bioprocessing\",\"authors\":\"Punnita Pamueangmun, A. Abdullahi, M. Kabir, Kridsada Unban, Apinun Kanpiengjai, J. Venus, K. Shetty, C. Saenjum, C. Khanongnuch\",\"doi\":\"10.3390/fermentation9080761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-generation lactic acid production requires the development of sustainable and economically feasible processes and renewable lignocellulose biomass as a starting raw material. Weizmannia coagulans MA42 was isolated from a soil sample in Chiang Mai province, Thailand and showed the highest production of L-lactic acid and lignocellulolytic enzymes (cellulase, β-mannanase, xylanase, β-glucosidase, β-mannosidase, and β-xylosidase) compared to other isolates. Weizmannia coagulans MA42 was able to grow, secrete lignocellulolytic enzymes, and directly produce L-lactic acid in the medium containing various lignocellulosic feedstocks as the sole carbon source. Moreover, L-lactic acid production efficiency was improved after the substrates were pretreated with diluted sulfuric acid and diluted sodium hydroxide. The highest L-lactic acid production efficiency of 553.4 ± 2.9, 325.4 ± 4.1, 326.6 ± 4.4, 528.0 ± 7.2, and 547.0 ± 2.2 mg/g total available carbohydrate was obtained from respective pretreated substrates including sugarcane bagasse, sugarcane trash, corn stover, rice straw, and water hyacinth. It is suggested that structural complexity of the lignocellulosic materials and properties of lignocellulolytic enzymes are the key factors of consolidated bioprocessing (CBP) of lignocellulosic feedstocks to lactic acid. In addition, the results of this study indicated that W. coagulans MA42 is a potent bacterial candidate for CBP of a variety of lignocellulosic feedstocks to L-lactic acid production; however, further bioprocess development and genetic engineering technique would provide higher lactic acid production efficiency, and this would lead to sustainable lactic acid production from lignocellulosic feedstocks.\",\"PeriodicalId\":48535,\"journal\":{\"name\":\"Fermentation-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation9080761\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fermentation9080761","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

第二代乳酸生产需要开发可持续和经济可行的工艺,并以可再生木质纤维素生物质为起始原料。Weizmannia coagulans MA42从泰国清迈省的土壤样品中分离得到,与其他分离菌株相比,其l -乳酸和木质纤维素水解酶(纤维素酶、β-甘露聚糖酶、木聚糖酶、β-葡萄糖苷酶、β-甘露聚糖酶和β-木糖苷酶)的产量最高。Weizmannia coagulans MA42在以多种木质纤维素原料为唯一碳源的培养基中能够生长、分泌木质纤维素水解酶,并直接产生l -乳酸。用稀硫酸和稀氢氧化钠对底物进行预处理,提高了l -乳酸的生产效率。甘蔗甘蔗渣、甘蔗垃圾、玉米秸秆、稻草和水葫芦的l -乳酸生产效率最高,分别为553.4±2.9、325.4±4.1、326.6±4.4、528.0±7.2和547.0±2.2 mg/g总有效碳水化合物。综上所述,木质纤维素原料的结构复杂性和木质纤维素水解酶的性能是木质纤维素原料固化生物加工制乳酸的关键因素。此外,本研究结果表明,W.凝固菌MA42是一种有效的候选细菌,可用于多种木质纤维素原料的CBP,以生产l -乳酸;然而,进一步的生物工艺开发和基因工程技术将提供更高的乳酸生产效率,这将导致木质纤维素原料的可持续乳酸生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lignocellulose Degrading Weizmannia coagulans Capable of Enantiomeric L-Lactic Acid Production via Consolidated Bioprocessing
Second-generation lactic acid production requires the development of sustainable and economically feasible processes and renewable lignocellulose biomass as a starting raw material. Weizmannia coagulans MA42 was isolated from a soil sample in Chiang Mai province, Thailand and showed the highest production of L-lactic acid and lignocellulolytic enzymes (cellulase, β-mannanase, xylanase, β-glucosidase, β-mannosidase, and β-xylosidase) compared to other isolates. Weizmannia coagulans MA42 was able to grow, secrete lignocellulolytic enzymes, and directly produce L-lactic acid in the medium containing various lignocellulosic feedstocks as the sole carbon source. Moreover, L-lactic acid production efficiency was improved after the substrates were pretreated with diluted sulfuric acid and diluted sodium hydroxide. The highest L-lactic acid production efficiency of 553.4 ± 2.9, 325.4 ± 4.1, 326.6 ± 4.4, 528.0 ± 7.2, and 547.0 ± 2.2 mg/g total available carbohydrate was obtained from respective pretreated substrates including sugarcane bagasse, sugarcane trash, corn stover, rice straw, and water hyacinth. It is suggested that structural complexity of the lignocellulosic materials and properties of lignocellulolytic enzymes are the key factors of consolidated bioprocessing (CBP) of lignocellulosic feedstocks to lactic acid. In addition, the results of this study indicated that W. coagulans MA42 is a potent bacterial candidate for CBP of a variety of lignocellulosic feedstocks to L-lactic acid production; however, further bioprocess development and genetic engineering technique would provide higher lactic acid production efficiency, and this would lead to sustainable lactic acid production from lignocellulosic feedstocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fermentation-Basel
Fermentation-Basel BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
3.80
自引率
18.90%
发文量
594
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信