Edward H. Berke, P. Spry, A. Heimann, G. Teale, B. Johnson, A. von der Handt, Brian Alers, John M. Shallow
{"title":"科罗拉多中部变质古元古代块状硫化物矿床的成因:地质、矿物学和硫同位素约束","authors":"Edward H. Berke, P. Spry, A. Heimann, G. Teale, B. Johnson, A. von der Handt, Brian Alers, John M. Shallow","doi":"10.1017/S0016756823000407","DOIUrl":null,"url":null,"abstract":"Abstract Paleoproterozoic massive Cu-Zn±Pb±Au±Ag sulphide deposits metamorphosed to the middle-upper amphibolite facies in central-south Colorado formed in a volcanic arc setting on the edge of the Yavapai crustal province. Previously published U-Pb ages on spatially related granitoids range from ∼1.9 to ∼1.1 Ga, while Pb isotope studies on galena from massive sulphides suggest mineralization formed at around 1.8–1.7 Ga. Some deposits in the Dawson-Green Mountain trend (DGMT) and the Gunnison belt are composed of Cu-Zn-Au-(Pb-Ag) mineralization that were overprinted by later Au-(Ag-Cu-Bi-Se-Te) mineralization. Sulphide mineralization is spatially related to amphibolite and bimodal, mafic-felsic volcanic rocks (gabbro, amphibolite, rhyolite and dacite) and granitoids, but it occurs mostly in biotite-garnet-quartz±sillimanite±cordierite schists and gneisses, spatially related to nodular sillimanite rocks, and in some locations, exhalative rocks (iron formations, gahnite-rich rocks and quartz-garnetite). The major metallic minerals of the massive sulphides include chalcopyrite, sphalerite, pyrite, pyrrhotite, and magnetite, with minor galena and gahnite. Altered rocks intimately associated with mineralization primarily consist of various amphiboles (gedrite, tremolite and hornblende), gahnite, biotite, garnet, cordierite, carbonate and rare högbomite. The Zn/Cd ratios of sphalerite (44 to 307) in deposits in the DGMT fall within the range of global volcanogenic massive sulphide (VMS) deposits but overlap with sphalerite from sedimentary exhalative (Sedex) deposits. Sulphur isotope values of sulphides (δ34S = −3.3 to +6.5) suggest sulphur was largely derived from magmatic sources, and that variations in isotopic values resulting from thermochemical sulphate reduction are due to small differences in physicochemical conditions. The preferred genetic model is for the deposits to be bimodal-mafic (Gunnison) to mafic-siliciclastic VMS deposits (Cotopaxi, Cinderella-Bon Ton, DGMT).","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"1345 - 1375"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genesis of metamorphosed Paleoproterozoic massive sulphide occurrences in central Colorado: geological, mineralogical and sulphur isotope constraints\",\"authors\":\"Edward H. Berke, P. Spry, A. Heimann, G. Teale, B. Johnson, A. von der Handt, Brian Alers, John M. Shallow\",\"doi\":\"10.1017/S0016756823000407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Paleoproterozoic massive Cu-Zn±Pb±Au±Ag sulphide deposits metamorphosed to the middle-upper amphibolite facies in central-south Colorado formed in a volcanic arc setting on the edge of the Yavapai crustal province. Previously published U-Pb ages on spatially related granitoids range from ∼1.9 to ∼1.1 Ga, while Pb isotope studies on galena from massive sulphides suggest mineralization formed at around 1.8–1.7 Ga. Some deposits in the Dawson-Green Mountain trend (DGMT) and the Gunnison belt are composed of Cu-Zn-Au-(Pb-Ag) mineralization that were overprinted by later Au-(Ag-Cu-Bi-Se-Te) mineralization. Sulphide mineralization is spatially related to amphibolite and bimodal, mafic-felsic volcanic rocks (gabbro, amphibolite, rhyolite and dacite) and granitoids, but it occurs mostly in biotite-garnet-quartz±sillimanite±cordierite schists and gneisses, spatially related to nodular sillimanite rocks, and in some locations, exhalative rocks (iron formations, gahnite-rich rocks and quartz-garnetite). The major metallic minerals of the massive sulphides include chalcopyrite, sphalerite, pyrite, pyrrhotite, and magnetite, with minor galena and gahnite. Altered rocks intimately associated with mineralization primarily consist of various amphiboles (gedrite, tremolite and hornblende), gahnite, biotite, garnet, cordierite, carbonate and rare högbomite. The Zn/Cd ratios of sphalerite (44 to 307) in deposits in the DGMT fall within the range of global volcanogenic massive sulphide (VMS) deposits but overlap with sphalerite from sedimentary exhalative (Sedex) deposits. Sulphur isotope values of sulphides (δ34S = −3.3 to +6.5) suggest sulphur was largely derived from magmatic sources, and that variations in isotopic values resulting from thermochemical sulphate reduction are due to small differences in physicochemical conditions. The preferred genetic model is for the deposits to be bimodal-mafic (Gunnison) to mafic-siliciclastic VMS deposits (Cotopaxi, Cinderella-Bon Ton, DGMT).\",\"PeriodicalId\":12612,\"journal\":{\"name\":\"Geological Magazine\",\"volume\":\"160 1\",\"pages\":\"1345 - 1375\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S0016756823000407\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0016756823000407","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The genesis of metamorphosed Paleoproterozoic massive sulphide occurrences in central Colorado: geological, mineralogical and sulphur isotope constraints
Abstract Paleoproterozoic massive Cu-Zn±Pb±Au±Ag sulphide deposits metamorphosed to the middle-upper amphibolite facies in central-south Colorado formed in a volcanic arc setting on the edge of the Yavapai crustal province. Previously published U-Pb ages on spatially related granitoids range from ∼1.9 to ∼1.1 Ga, while Pb isotope studies on galena from massive sulphides suggest mineralization formed at around 1.8–1.7 Ga. Some deposits in the Dawson-Green Mountain trend (DGMT) and the Gunnison belt are composed of Cu-Zn-Au-(Pb-Ag) mineralization that were overprinted by later Au-(Ag-Cu-Bi-Se-Te) mineralization. Sulphide mineralization is spatially related to amphibolite and bimodal, mafic-felsic volcanic rocks (gabbro, amphibolite, rhyolite and dacite) and granitoids, but it occurs mostly in biotite-garnet-quartz±sillimanite±cordierite schists and gneisses, spatially related to nodular sillimanite rocks, and in some locations, exhalative rocks (iron formations, gahnite-rich rocks and quartz-garnetite). The major metallic minerals of the massive sulphides include chalcopyrite, sphalerite, pyrite, pyrrhotite, and magnetite, with minor galena and gahnite. Altered rocks intimately associated with mineralization primarily consist of various amphiboles (gedrite, tremolite and hornblende), gahnite, biotite, garnet, cordierite, carbonate and rare högbomite. The Zn/Cd ratios of sphalerite (44 to 307) in deposits in the DGMT fall within the range of global volcanogenic massive sulphide (VMS) deposits but overlap with sphalerite from sedimentary exhalative (Sedex) deposits. Sulphur isotope values of sulphides (δ34S = −3.3 to +6.5) suggest sulphur was largely derived from magmatic sources, and that variations in isotopic values resulting from thermochemical sulphate reduction are due to small differences in physicochemical conditions. The preferred genetic model is for the deposits to be bimodal-mafic (Gunnison) to mafic-siliciclastic VMS deposits (Cotopaxi, Cinderella-Bon Ton, DGMT).
期刊介绍:
Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field.
This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.