多个Zeta值正则化定理的多项式推广

IF 1.1 2区 数学 Q1 MATHEMATICS
M. Hirose, H. Murahara, Shingo Saito
{"title":"多个Zeta值正则化定理的多项式推广","authors":"M. Hirose, H. Murahara, Shingo Saito","doi":"10.4171/prims/56-1-9","DOIUrl":null,"url":null,"abstract":"Ihara, Kaneko, and Zagier defined two regularizations of multiple zeta values and proved the regularization theorem that describes the relation between those regularizations. We show that the regularization theorem can be generalized to polynomials whose coefficients are regularizations of multiple zeta values and that specialize to symmetric multiple zeta values defined by Kaneko and Zagier.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-1-9","citationCount":"2","resultStr":"{\"title\":\"Polynomial Generalization of the Regularization Theorem for Multiple Zeta Values\",\"authors\":\"M. Hirose, H. Murahara, Shingo Saito\",\"doi\":\"10.4171/prims/56-1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ihara, Kaneko, and Zagier defined two regularizations of multiple zeta values and proved the regularization theorem that describes the relation between those regularizations. We show that the regularization theorem can be generalized to polynomials whose coefficients are regularizations of multiple zeta values and that specialize to symmetric multiple zeta values defined by Kaneko and Zagier.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-1-9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-1-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-1-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

Ihara、Kaneko和Zagier定义了多个ζ值的两个正则化,并证明了描述这些正则化之间关系的正则化定理。我们证明了正则化定理可以推广到多项式,这些多项式的系数是多个ζ值的正则化,并且专门化到由Kaneko和Zagier定义的对称多ζ值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial Generalization of the Regularization Theorem for Multiple Zeta Values
Ihara, Kaneko, and Zagier defined two regularizations of multiple zeta values and proved the regularization theorem that describes the relation between those regularizations. We show that the regularization theorem can be generalized to polynomials whose coefficients are regularizations of multiple zeta values and that specialize to symmetric multiple zeta values defined by Kaneko and Zagier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信