{"title":"灵巧微创手术机器人平台的设计与控制","authors":"N. Evangeliou, A. Tzes","doi":"10.15866/IREACO.V10I5.12748","DOIUrl":null,"url":null,"abstract":"In this article, a novel robotic platform for robotic assisted minimally invasive surgical operations is presented. The platform consists of a 3 Degree-of-Freedom (DoF) passive tool holder and a 12 DoF robotic probe for dexterous motion upon insertion. The developed prototype is presented in terms of its mechatronic and kinematic structure. Regarding actuation, a hybrid solution comprising of servo-motors for the extraoperative part of the robot and shape-memory-alloy actuators for the intraoperative probe is adopted. The latter are evaluated in terms of establishing an efficient antagonistic tendon-driven actuation control scheme. The robotic platform is in-vitro evaluated under a human-in-the-loop control scheme using a teleoperation device. Additionally, custom developed software for physicians’ training and pre-operative planning with the robot is presented.","PeriodicalId":38433,"journal":{"name":"International Review of Automatic Control","volume":"10 1","pages":"443-450"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Control of a Robotic Platform for Dexterous Minimally Invasive Surgical Applications\",\"authors\":\"N. Evangeliou, A. Tzes\",\"doi\":\"10.15866/IREACO.V10I5.12748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a novel robotic platform for robotic assisted minimally invasive surgical operations is presented. The platform consists of a 3 Degree-of-Freedom (DoF) passive tool holder and a 12 DoF robotic probe for dexterous motion upon insertion. The developed prototype is presented in terms of its mechatronic and kinematic structure. Regarding actuation, a hybrid solution comprising of servo-motors for the extraoperative part of the robot and shape-memory-alloy actuators for the intraoperative probe is adopted. The latter are evaluated in terms of establishing an efficient antagonistic tendon-driven actuation control scheme. The robotic platform is in-vitro evaluated under a human-in-the-loop control scheme using a teleoperation device. Additionally, custom developed software for physicians’ training and pre-operative planning with the robot is presented.\",\"PeriodicalId\":38433,\"journal\":{\"name\":\"International Review of Automatic Control\",\"volume\":\"10 1\",\"pages\":\"443-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Automatic Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREACO.V10I5.12748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREACO.V10I5.12748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Design and Control of a Robotic Platform for Dexterous Minimally Invasive Surgical Applications
In this article, a novel robotic platform for robotic assisted minimally invasive surgical operations is presented. The platform consists of a 3 Degree-of-Freedom (DoF) passive tool holder and a 12 DoF robotic probe for dexterous motion upon insertion. The developed prototype is presented in terms of its mechatronic and kinematic structure. Regarding actuation, a hybrid solution comprising of servo-motors for the extraoperative part of the robot and shape-memory-alloy actuators for the intraoperative probe is adopted. The latter are evaluated in terms of establishing an efficient antagonistic tendon-driven actuation control scheme. The robotic platform is in-vitro evaluated under a human-in-the-loop control scheme using a teleoperation device. Additionally, custom developed software for physicians’ training and pre-operative planning with the robot is presented.