用迭代法分析指数变厚度功能梯度盘的应力

Q3 Engineering
Sandeep Kumar Paul, M. Sahni
{"title":"用迭代法分析指数变厚度功能梯度盘的应力","authors":"Sandeep Kumar Paul, M. Sahni","doi":"10.37394/232011.2021.16.26","DOIUrl":null,"url":null,"abstract":"In this paper, variable thickness disk made up of functionally graded material (FGM) under internal and external pressure is analyzed using a simple iteration technique. Thickness of FGM disk and the material property, namely, Young’s modulus are varying exponentially in radial direction. Poisson’s ratio is considered invariant for the material. Navier equation is used to formulate the problem in the differential equation form under plane stress condition. Displacement, stresses, and strains are obtained under the influence of material gradation and variable thickness. Three different material combinations are considered for the FGM disk. The mechanical response of disk obtained for different functionally graded material combinations are compared with the homogenous disk, and results are plotted graphically","PeriodicalId":53603,"journal":{"name":"WSEAS Transactions on Applied and Theoretical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stress Analysis of Functionally Graded Disk with Exponentially Varying Thickness using Iterative Method\",\"authors\":\"Sandeep Kumar Paul, M. Sahni\",\"doi\":\"10.37394/232011.2021.16.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, variable thickness disk made up of functionally graded material (FGM) under internal and external pressure is analyzed using a simple iteration technique. Thickness of FGM disk and the material property, namely, Young’s modulus are varying exponentially in radial direction. Poisson’s ratio is considered invariant for the material. Navier equation is used to formulate the problem in the differential equation form under plane stress condition. Displacement, stresses, and strains are obtained under the influence of material gradation and variable thickness. Three different material combinations are considered for the FGM disk. The mechanical response of disk obtained for different functionally graded material combinations are compared with the homogenous disk, and results are plotted graphically\",\"PeriodicalId\":53603,\"journal\":{\"name\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Applied and Theoretical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232011.2021.16.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Applied and Theoretical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232011.2021.16.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文采用简单迭代法分析了功能梯度材料(FGM)在内外压作用下的变厚度圆盘。FGM圆盘的厚度和材料的杨氏模量沿径向呈指数变化。泊松比被认为是材料的不变量。在平面应力条件下,用Navier方程将问题以微分方程形式表示。位移、应力和应变是在材料级配和变厚度的影响下得到的。考虑了三种不同的材料组合用于FGM盘。将不同功能梯度材料组合得到的圆盘的力学响应与均匀圆盘的力学响应进行了比较,并将结果绘制成图形
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress Analysis of Functionally Graded Disk with Exponentially Varying Thickness using Iterative Method
In this paper, variable thickness disk made up of functionally graded material (FGM) under internal and external pressure is analyzed using a simple iteration technique. Thickness of FGM disk and the material property, namely, Young’s modulus are varying exponentially in radial direction. Poisson’s ratio is considered invariant for the material. Navier equation is used to formulate the problem in the differential equation form under plane stress condition. Displacement, stresses, and strains are obtained under the influence of material gradation and variable thickness. Three different material combinations are considered for the FGM disk. The mechanical response of disk obtained for different functionally graded material combinations are compared with the homogenous disk, and results are plotted graphically
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Applied and Theoretical Mechanics
WSEAS Transactions on Applied and Theoretical Mechanics Engineering-Computational Mechanics
CiteScore
1.30
自引率
0.00%
发文量
21
期刊介绍: WSEAS Transactions on Applied and Theoretical Mechanics publishes original research papers relating to computational and experimental mechanics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with fluid-structure interaction, impact and multibody dynamics, nonlinear dynamics, structural dynamics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信