训练径向基函数网络的量子加速

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
ShaoChangpeng
{"title":"训练径向基函数网络的量子加速","authors":"ShaoChangpeng","doi":"10.5555/3370207.3370213","DOIUrl":null,"url":null,"abstract":"Radial basis function (RBF) network is a simple but useful neural network model that contains wide applications in machine learning. The training of an RBF network reduces to solve a linear system,...","PeriodicalId":54524,"journal":{"name":"Quantum Information & Computation","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum speedup of training radial basis function networks\",\"authors\":\"ShaoChangpeng\",\"doi\":\"10.5555/3370207.3370213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radial basis function (RBF) network is a simple but useful neural network model that contains wide applications in machine learning. The training of an RBF network reduces to solve a linear system,...\",\"PeriodicalId\":54524,\"journal\":{\"name\":\"Quantum Information & Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information & Computation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5555/3370207.3370213\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information & Computation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5555/3370207.3370213","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

径向基函数(RBF)网络是一种简单而实用的神经网络模型,在机器学习中有着广泛的应用。RBF网络的训练简化为求解一个线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum speedup of training radial basis function networks
Radial basis function (RBF) network is a simple but useful neural network model that contains wide applications in machine learning. The training of an RBF network reduces to solve a linear system,...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information & Computation
Quantum Information & Computation 物理-计算机:理论方法
CiteScore
1.70
自引率
0.00%
发文量
42
审稿时长
3.3 months
期刊介绍: Quantum Information & Computation provides a forum for distribution of information in all areas of quantum information processing. Original articles, survey articles, reviews, tutorials, perspectives, and correspondences are all welcome. Computer science, physics and mathematics are covered. Both theory and experiments are included. Illustrative subjects include quantum algorithms, quantum information theory, quantum complexity theory, quantum cryptology, quantum communication and measurements, proposals and experiments on the implementation of quantum computation, communications, and entanglement in all areas of science including ion traps, cavity QED, photons, nuclear magnetic resonance, and solid-state proposals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信