{"title":"四轴飞行器不同球体直径的前飞试验","authors":"B. Theys, J. De Schutter","doi":"10.1177/1756829320923565","DOIUrl":null,"url":null,"abstract":"This paper presents experimental results on the relation between forward airspeed, pitch angle, and power consumption of a quadcopter unmanned aerial vehicle. The quadcopter consists of an interchangeable spherical body, four cylindrical arms, and small propellers mounted at 1 m diagonal distance to minimize interference between body and propellers. This simple geometry facilitates results reproduction and comparison with simulation. Two different takeoff masses and four diameters of spherical bodies are tested for their steady-state speed and power for pitch angles up to − 45 ° . The steady-state horizontal flight is recorded with on-board sensors at the end of flying long straight lines at a constant pitch angle in wind-still conditions. The best effective lift-to-drag ratio increases for smaller bodies and occurs at higher speeds for increasing mass. Results show that the equivalent frontal surface stays constant for pitch angles further than − 5 ° up to the maximum recorded − 45 ° and increases linearly with the frontal surface of the body.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829320923565","citationCount":"12","resultStr":"{\"title\":\"Forward flight tests of a quadcopter unmanned aerial vehicle with various spherical body diameters\",\"authors\":\"B. Theys, J. De Schutter\",\"doi\":\"10.1177/1756829320923565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents experimental results on the relation between forward airspeed, pitch angle, and power consumption of a quadcopter unmanned aerial vehicle. The quadcopter consists of an interchangeable spherical body, four cylindrical arms, and small propellers mounted at 1 m diagonal distance to minimize interference between body and propellers. This simple geometry facilitates results reproduction and comparison with simulation. Two different takeoff masses and four diameters of spherical bodies are tested for their steady-state speed and power for pitch angles up to − 45 ° . The steady-state horizontal flight is recorded with on-board sensors at the end of flying long straight lines at a constant pitch angle in wind-still conditions. The best effective lift-to-drag ratio increases for smaller bodies and occurs at higher speeds for increasing mass. Results show that the equivalent frontal surface stays constant for pitch angles further than − 5 ° up to the maximum recorded − 45 ° and increases linearly with the frontal surface of the body.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829320923565\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829320923565\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829320923565","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Forward flight tests of a quadcopter unmanned aerial vehicle with various spherical body diameters
This paper presents experimental results on the relation between forward airspeed, pitch angle, and power consumption of a quadcopter unmanned aerial vehicle. The quadcopter consists of an interchangeable spherical body, four cylindrical arms, and small propellers mounted at 1 m diagonal distance to minimize interference between body and propellers. This simple geometry facilitates results reproduction and comparison with simulation. Two different takeoff masses and four diameters of spherical bodies are tested for their steady-state speed and power for pitch angles up to − 45 ° . The steady-state horizontal flight is recorded with on-board sensors at the end of flying long straight lines at a constant pitch angle in wind-still conditions. The best effective lift-to-drag ratio increases for smaller bodies and occurs at higher speeds for increasing mass. Results show that the equivalent frontal surface stays constant for pitch angles further than − 5 ° up to the maximum recorded − 45 ° and increases linearly with the frontal surface of the body.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.