{"title":"非线性大偏差界在Wigner矩阵和稀疏Erdős-Rényi图中的应用","authors":"F. Augeri","doi":"10.1214/20-aop1427","DOIUrl":null,"url":null,"abstract":"We prove general nonlinear large deviation estimates similar to Chatterjee-Dembo’s original bounds except that we do not require any second order smoothness. Our approach relies on convex analysis arguments and is valid for a broad class of distributions. Our results are then applied in three different setups. Our first application consists in the mean-field approximation of the partition function of the Ising model under an optimal assumption on the spectra of the adjacency matrices of the sequence of graphs. Next, we apply our general large deviation bound to investigate the large deviation of the traces of powers of Wigner matrices with sub-Gaussian entries, and the upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity threshold n−1/2.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős–Rényi graphs\",\"authors\":\"F. Augeri\",\"doi\":\"10.1214/20-aop1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove general nonlinear large deviation estimates similar to Chatterjee-Dembo’s original bounds except that we do not require any second order smoothness. Our approach relies on convex analysis arguments and is valid for a broad class of distributions. Our results are then applied in three different setups. Our first application consists in the mean-field approximation of the partition function of the Ising model under an optimal assumption on the spectra of the adjacency matrices of the sequence of graphs. Next, we apply our general large deviation bound to investigate the large deviation of the traces of powers of Wigner matrices with sub-Gaussian entries, and the upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity threshold n−1/2.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aop1427\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aop1427","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős–Rényi graphs
We prove general nonlinear large deviation estimates similar to Chatterjee-Dembo’s original bounds except that we do not require any second order smoothness. Our approach relies on convex analysis arguments and is valid for a broad class of distributions. Our results are then applied in three different setups. Our first application consists in the mean-field approximation of the partition function of the Ising model under an optimal assumption on the spectra of the adjacency matrices of the sequence of graphs. Next, we apply our general large deviation bound to investigate the large deviation of the traces of powers of Wigner matrices with sub-Gaussian entries, and the upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity threshold n−1/2.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.