Hamada Rizk, H. Yamaguchi, Maged A. Youssef, T. Higashino
{"title":"用于实现零开销wifi室内定位系统的激光测距扫描仪","authors":"Hamada Rizk, H. Yamaguchi, Maged A. Youssef, T. Higashino","doi":"10.1145/3539659","DOIUrl":null,"url":null,"abstract":"Robust and accurate indoor localization has been the goal of several research efforts over the past decade. Toward achieving this goal, WiFi fingerprinting-based indoor localization systems have been proposed. However, fingerprinting involves significant effort—especially when done at high density—and needs to be repeated with any change in the deployment area. While a number of recent systems have been introduced to reduce the calibration effort, these still trade overhead with accuracy. This article presents LiPhi++, an accurate system for enabling fingerprinting-based indoor localization systems without the associated data collection overhead. This is achieved by leveraging the sensing capability of transportable laser range scanners to automatically label WiFi scans, which can subsequently be used to build (and maintain) a fingerprint database. As part of its design, LiPhi++ leverages this database to train a deep long short-term memory network utilizing the signal strength history from the detected access points. LiPhi++ also has provisions for handling practical deployment issues, including the noisy wireless environment, heterogeneous devices, among others. Evaluation of LiPhi++ using Android phones in two realistic testbeds shows that it can match the performance of manual fingerprinting techniques under the same deployment conditions without the overhead associated with the traditional fingerprinting process. In addition, LiPhi++ improves upon the median localization accuracy obtained from crowdsourcing-based and fingerprinting-based systems by 284% and 418%, respectively, when tested with data collected a few months later.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":" ","pages":"1 - 25"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Laser Range Scanners for Enabling Zero-overhead WiFi-based Indoor Localization System\",\"authors\":\"Hamada Rizk, H. Yamaguchi, Maged A. Youssef, T. Higashino\",\"doi\":\"10.1145/3539659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust and accurate indoor localization has been the goal of several research efforts over the past decade. Toward achieving this goal, WiFi fingerprinting-based indoor localization systems have been proposed. However, fingerprinting involves significant effort—especially when done at high density—and needs to be repeated with any change in the deployment area. While a number of recent systems have been introduced to reduce the calibration effort, these still trade overhead with accuracy. This article presents LiPhi++, an accurate system for enabling fingerprinting-based indoor localization systems without the associated data collection overhead. This is achieved by leveraging the sensing capability of transportable laser range scanners to automatically label WiFi scans, which can subsequently be used to build (and maintain) a fingerprint database. As part of its design, LiPhi++ leverages this database to train a deep long short-term memory network utilizing the signal strength history from the detected access points. LiPhi++ also has provisions for handling practical deployment issues, including the noisy wireless environment, heterogeneous devices, among others. Evaluation of LiPhi++ using Android phones in two realistic testbeds shows that it can match the performance of manual fingerprinting techniques under the same deployment conditions without the overhead associated with the traditional fingerprinting process. In addition, LiPhi++ improves upon the median localization accuracy obtained from crowdsourcing-based and fingerprinting-based systems by 284% and 418%, respectively, when tested with data collected a few months later.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\" \",\"pages\":\"1 - 25\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Laser Range Scanners for Enabling Zero-overhead WiFi-based Indoor Localization System
Robust and accurate indoor localization has been the goal of several research efforts over the past decade. Toward achieving this goal, WiFi fingerprinting-based indoor localization systems have been proposed. However, fingerprinting involves significant effort—especially when done at high density—and needs to be repeated with any change in the deployment area. While a number of recent systems have been introduced to reduce the calibration effort, these still trade overhead with accuracy. This article presents LiPhi++, an accurate system for enabling fingerprinting-based indoor localization systems without the associated data collection overhead. This is achieved by leveraging the sensing capability of transportable laser range scanners to automatically label WiFi scans, which can subsequently be used to build (and maintain) a fingerprint database. As part of its design, LiPhi++ leverages this database to train a deep long short-term memory network utilizing the signal strength history from the detected access points. LiPhi++ also has provisions for handling practical deployment issues, including the noisy wireless environment, heterogeneous devices, among others. Evaluation of LiPhi++ using Android phones in two realistic testbeds shows that it can match the performance of manual fingerprinting techniques under the same deployment conditions without the overhead associated with the traditional fingerprinting process. In addition, LiPhi++ improves upon the median localization accuracy obtained from crowdsourcing-based and fingerprinting-based systems by 284% and 418%, respectively, when tested with data collected a few months later.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.