正交、对称和斜对称矩阵的和

Pub Date : 2022-10-07 DOI:10.13001/ela.2022.7129
Ralph John de la Cruz, Agnes T. Paras
{"title":"正交、对称和斜对称矩阵的和","authors":"Ralph John de la Cruz, Agnes T. Paras","doi":"10.13001/ela.2022.7129","DOIUrl":null,"url":null,"abstract":"An $n$-by-$n$ matrix $A$ is called symmetric, skew-symmetric, and orthogonal if $A^T=A$, $A^T=-A$, and $A^T=A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type ``\"orthogonal $+$ symmetric\" in terms of the Jordan form of $A-A^T$. We also give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type \"orthogonal $+$ skew-symmetric\" in terms of the Jordan form of $A+A^T$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of orthogonal, symmetric, and skew-symmetric matrices\",\"authors\":\"Ralph John de la Cruz, Agnes T. Paras\",\"doi\":\"10.13001/ela.2022.7129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An $n$-by-$n$ matrix $A$ is called symmetric, skew-symmetric, and orthogonal if $A^T=A$, $A^T=-A$, and $A^T=A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type ``\\\"orthogonal $+$ symmetric\\\" in terms of the Jordan form of $A-A^T$. We also give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type \\\"orthogonal $+$ skew-symmetric\\\" in terms of the Jordan form of $A+A^T$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果$A^T=A$、$A^T=-A$和$A^T=A^{-1}$,则一个$n$ × $n$矩阵$A$分别称为对称、偏对称和正交矩阵$A$。给出了复矩阵$ a $在$ a - a ^T$的约当形式下是“正交$+对称$”型和的充要条件。我们还给出了复矩阵$ a $在$ a + a ^T$的约当形式下是“正交$+$偏对称”型和的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sums of orthogonal, symmetric, and skew-symmetric matrices
An $n$-by-$n$ matrix $A$ is called symmetric, skew-symmetric, and orthogonal if $A^T=A$, $A^T=-A$, and $A^T=A^{-1}$, respectively. We give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type ``"orthogonal $+$ symmetric" in terms of the Jordan form of $A-A^T$. We also give necessary and sufficient conditions on a complex matrix $A$ so that it is a sum of type "orthogonal $+$ skew-symmetric" in terms of the Jordan form of $A+A^T$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信