Min-Hyeok Kim, Suk-Yoon Hong, Jee-hun Song, Beom-Jin Joe, Woen-Sug Choi
{"title":"最小化第一叶片通过频率噪声的风机最佳风管长度","authors":"Min-Hyeok Kim, Suk-Yoon Hong, Jee-hun Song, Beom-Jin Joe, Woen-Sug Choi","doi":"10.3397/1/377116","DOIUrl":null,"url":null,"abstract":"Fans generate tone noise and broadband noise. The first blade-passing frequency noise is a tone noise and is the most dominant; attaching a duct and a stator can reduce this noise. However, there has been no theoretical development in using structural characteristics to reduce the noise\n generated by ducted fans. In this study, noise predictions using Lighthill's equation and Green's function were performed to determine the optimal duct length for a ducted fan's noise reduction. New formulations for predicting the length were derived using a modal noise analysis. Noise sources\n were obtained from computational fluid dynamics data and wall pressure spectra. The formulations deduce a linear relationship between a duct's radius and length and can be used as a tool to indicate fan size at the design stage under space and weight constraints without high computational\n costs.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal duct length of ducted fans for minimizing first blade-passing frequency noise\",\"authors\":\"Min-Hyeok Kim, Suk-Yoon Hong, Jee-hun Song, Beom-Jin Joe, Woen-Sug Choi\",\"doi\":\"10.3397/1/377116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fans generate tone noise and broadband noise. The first blade-passing frequency noise is a tone noise and is the most dominant; attaching a duct and a stator can reduce this noise. However, there has been no theoretical development in using structural characteristics to reduce the noise\\n generated by ducted fans. In this study, noise predictions using Lighthill's equation and Green's function were performed to determine the optimal duct length for a ducted fan's noise reduction. New formulations for predicting the length were derived using a modal noise analysis. Noise sources\\n were obtained from computational fluid dynamics data and wall pressure spectra. The formulations deduce a linear relationship between a duct's radius and length and can be used as a tool to indicate fan size at the design stage under space and weight constraints without high computational\\n costs.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/377116\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/377116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimal duct length of ducted fans for minimizing first blade-passing frequency noise
Fans generate tone noise and broadband noise. The first blade-passing frequency noise is a tone noise and is the most dominant; attaching a duct and a stator can reduce this noise. However, there has been no theoretical development in using structural characteristics to reduce the noise
generated by ducted fans. In this study, noise predictions using Lighthill's equation and Green's function were performed to determine the optimal duct length for a ducted fan's noise reduction. New formulations for predicting the length were derived using a modal noise analysis. Noise sources
were obtained from computational fluid dynamics data and wall pressure spectra. The formulations deduce a linear relationship between a duct's radius and length and can be used as a tool to indicate fan size at the design stage under space and weight constraints without high computational
costs.
期刊介绍:
NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE).
NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes.
INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ:
Provides the opportunity to reach a global audience of NCE professionals, academics, and students;
Enhances the prestige of your work;
Validates your work by formal peer review.