截尾分位数回归的矩估计

IF 0.8 4区 经济学 Q3 ECONOMICS
Qian Wang, S. Chen
{"title":"截尾分位数回归的矩估计","authors":"Qian Wang, S. Chen","doi":"10.1080/07474938.2021.1889207","DOIUrl":null,"url":null,"abstract":"Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"40 1","pages":"815 - 829"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474938.2021.1889207","citationCount":"6","resultStr":"{\"title\":\"Moment estimation for censored quantile regression\",\"authors\":\"Qian Wang, S. Chen\",\"doi\":\"10.1080/07474938.2021.1889207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"40 1\",\"pages\":\"815 - 829\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474938.2021.1889207\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2021.1889207\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1889207","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

摘要

鲍威尔(Journal of Econometrics, 25(3): 303-325, 1984;计量经济学学报,32(1):143-155,1986)提出了基于优化的截后最小绝对偏差估计(CLAD)和一般截后分位数回归估计(CQR)。然而,人们已经认识到,这种基于优化的估计器在有限样本中可能表现不佳(例如,Khan和Powell, Journal of Econometrics 103(1-2):73 - 110,2001;菲岑伯格,《统计手册》。爱思唯尔,1996;菲岑伯格和温克,计算统计与数据分析52(1):88-108,2007;Koenker, Journal of Statistical Software 27(6), 2008)。本文提出了一种基于矩的截尾分位数回归估计器。虽然CQR和MCQR估计器都具有相同的大样本特性,但我们的仿真结果表明,我们的矩基估计器(MCQR)具有一定的优势。此外,未经审查的模型的经验似然方法(例如,Whang 2006;Otsu, Journal of Econometrics 142(1): 508-538, 2008)可以很容易地在我们的矩估计框架方法中适应删节模型。结合Chernozhukov和Hansen的见解(Journal Econometrics 132(2):491 - 525,2006),我们开发了工具变量删节分位数回归估计(IVCQR);计量经济学报(1):1 - 4 .中国经济发展的新趋势。仿真结果表明,该IVCQR估计器性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment estimation for censored quantile regression
Abstract In influential articles Powell (Journal of Econometrics 25(3):303–325, 1984; Journal of Econometrics 32(1):143–155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1–2):73–110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88–108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006; Otsu, Journal of Econometrics 142(1):508–538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen’s (Journal of Econometrics 132(2):491–525, 2006; Journal of Econometrics 142(1):379–398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信