{"title":"具有一般初始数据的三尺度双曲型偏微分方程组的一致存在性和收敛性定理","authors":"S. Schochet, Xin Xu","doi":"10.1080/03605302.2022.2129383","DOIUrl":null,"url":null,"abstract":"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data\",\"authors\":\"S. Schochet, Xin Xu\",\"doi\":\"10.1080/03605302.2022.2129383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2129383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2129383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data
Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.