具有一般初始数据的三尺度双曲型偏微分方程组的一致存在性和收敛性定理

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
S. Schochet, Xin Xu
{"title":"具有一般初始数据的三尺度双曲型偏微分方程组的一致存在性和收敛性定理","authors":"S. Schochet, Xin Xu","doi":"10.1080/03605302.2022.2129383","DOIUrl":null,"url":null,"abstract":"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data\",\"authors\":\"S. Schochet, Xin Xu\",\"doi\":\"10.1080/03605302.2022.2129383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2129383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2129383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要证明了一类特殊的三尺度奇异极限方程初值问题解的一致存在性和适当滤波解的收敛性,对初值没有任何限制。使用一个新的能量估计系统证明了一致存在性。收敛结果基于对最快尺度振荡的详细分析,这与两个尺度系统不同,没有明确的解公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data
Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信