{"title":"具有一般初始数据的三尺度双曲型偏微分方程组的一致存在性和收敛性定理","authors":"S. Schochet, Xin Xu","doi":"10.1080/03605302.2022.2129383","DOIUrl":null,"url":null,"abstract":"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"2401 - 2443"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data\",\"authors\":\"S. Schochet, Xin Xu\",\"doi\":\"10.1080/03605302.2022.2129383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"2401 - 2443\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2129383\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2129383","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Toward uniform existence and convergence theorems for three-scale systems of hyperbolic PDEs with general initial data
Abstract Uniform existence of solutions to initial-value problems and convergence of appropriately filtered solutions are proven for a special class of three-scale singular limit equations, without any restriction on the initial data. The uniform existence is proven using a novel system of energy estimates. The convergence result is based on a detailed analysis of the fastest-scale oscillations, which unlike in two-scale systems have no explicit solution formula.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.