使用碳排放抑制分析(CEPA)对特立尼达和多巴哥发电部门碳减排战略进行技术经济量化

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Dillon Ramsook, Donnie Boodlal, R. Maharaj
{"title":"使用碳排放抑制分析(CEPA)对特立尼达和多巴哥发电部门碳减排战略进行技术经济量化","authors":"Dillon Ramsook, Donnie Boodlal, R. Maharaj","doi":"10.1080/17583004.2023.2227159","DOIUrl":null,"url":null,"abstract":"Abstract Trinidad and Tobago’s (T&T) conditional commitment to the Paris Agreement requires an overall power emission avoidance (EAT) of 28.7 MtCO2-e from Business-As-Usual by 2030, dependent on international financing. T&T has outlined several initiatives to achieve this, including zero-carbon renewable energy (RE) introduction. However, other technologies such as Carbon Capture and Storage (CCS) can also be used in support of achieving EAT. Using a specific scenario (S3), this study assesses the techno-economics of CCS within the sector to minimize the requirement of RE using a carbon measuring tool called Carbon Emission Pinch Analysis (CEPA) to achieve EAT. Local power plants were screened, and a CCS retrofit was then technically designed using a validated software called Aspen HYSYS. Multi-period CEPA methodology was then applied to quantify ∼17% of grid energy from RE along with CCS to achieve EAT. Economic models were also used to determine the grid unit cost of emission abatement for S3 to be 64 USD/tCO2-e; a doubling of initial projection requirements. With T&T’s current dynamics, these findings can help guide actions to reduce the requirements of RE onto the grid through the supplemental introduction of CCS to achieve its EAT.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A techno-economic quantification of carbon reduction strategies in the Trinidad and Tobago power generation sector using Carbon Emission Pinch Analysis (CEPA)\",\"authors\":\"Dillon Ramsook, Donnie Boodlal, R. Maharaj\",\"doi\":\"10.1080/17583004.2023.2227159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Trinidad and Tobago’s (T&T) conditional commitment to the Paris Agreement requires an overall power emission avoidance (EAT) of 28.7 MtCO2-e from Business-As-Usual by 2030, dependent on international financing. T&T has outlined several initiatives to achieve this, including zero-carbon renewable energy (RE) introduction. However, other technologies such as Carbon Capture and Storage (CCS) can also be used in support of achieving EAT. Using a specific scenario (S3), this study assesses the techno-economics of CCS within the sector to minimize the requirement of RE using a carbon measuring tool called Carbon Emission Pinch Analysis (CEPA) to achieve EAT. Local power plants were screened, and a CCS retrofit was then technically designed using a validated software called Aspen HYSYS. Multi-period CEPA methodology was then applied to quantify ∼17% of grid energy from RE along with CCS to achieve EAT. Economic models were also used to determine the grid unit cost of emission abatement for S3 to be 64 USD/tCO2-e; a doubling of initial projection requirements. With T&T’s current dynamics, these findings can help guide actions to reduce the requirements of RE onto the grid through the supplemental introduction of CCS to achieve its EAT.\",\"PeriodicalId\":48941,\"journal\":{\"name\":\"Carbon Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/17583004.2023.2227159\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2023.2227159","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A techno-economic quantification of carbon reduction strategies in the Trinidad and Tobago power generation sector using Carbon Emission Pinch Analysis (CEPA)
Abstract Trinidad and Tobago’s (T&T) conditional commitment to the Paris Agreement requires an overall power emission avoidance (EAT) of 28.7 MtCO2-e from Business-As-Usual by 2030, dependent on international financing. T&T has outlined several initiatives to achieve this, including zero-carbon renewable energy (RE) introduction. However, other technologies such as Carbon Capture and Storage (CCS) can also be used in support of achieving EAT. Using a specific scenario (S3), this study assesses the techno-economics of CCS within the sector to minimize the requirement of RE using a carbon measuring tool called Carbon Emission Pinch Analysis (CEPA) to achieve EAT. Local power plants were screened, and a CCS retrofit was then technically designed using a validated software called Aspen HYSYS. Multi-period CEPA methodology was then applied to quantify ∼17% of grid energy from RE along with CCS to achieve EAT. Economic models were also used to determine the grid unit cost of emission abatement for S3 to be 64 USD/tCO2-e; a doubling of initial projection requirements. With T&T’s current dynamics, these findings can help guide actions to reduce the requirements of RE onto the grid through the supplemental introduction of CCS to achieve its EAT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Management
Carbon Management ENVIRONMENTAL SCIENCES-
CiteScore
5.80
自引率
3.20%
发文量
35
期刊介绍: Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology. The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices. One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信