{"title":"不可分计数数据工具变量模型的部分识别","authors":"Dongwoo Kim","doi":"10.1093/ectj/utz025","DOIUrl":null,"url":null,"abstract":"\n This paper investigates undesirable limitations of widely used count data instrumental variable models. To overcome the limitations, I propose a partially identifying single-equation model that requires neither strong separability of unobserved heterogeneity nor a triangular system. Sharp bounds (identified sets) of structural features are characterised by conditional moment inequalities. Numerical examples show that the size of an identified set can be very small when the support of an outcome is rich or instruments are strong. An algorithm for estimation and inference is presented. I illustrate the usefulness of the proposed model in an empirical application to effects of supplemental insurance on healthcare utilisation.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"23 1","pages":"232-250"},"PeriodicalIF":2.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utz025","citationCount":"0","resultStr":"{\"title\":\"Partial identification in nonseparable count data instrumental variable models\",\"authors\":\"Dongwoo Kim\",\"doi\":\"10.1093/ectj/utz025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper investigates undesirable limitations of widely used count data instrumental variable models. To overcome the limitations, I propose a partially identifying single-equation model that requires neither strong separability of unobserved heterogeneity nor a triangular system. Sharp bounds (identified sets) of structural features are characterised by conditional moment inequalities. Numerical examples show that the size of an identified set can be very small when the support of an outcome is rich or instruments are strong. An algorithm for estimation and inference is presented. I illustrate the usefulness of the proposed model in an empirical application to effects of supplemental insurance on healthcare utilisation.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"23 1\",\"pages\":\"232-250\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/ectj/utz025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/ectj/utz025\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utz025","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Partial identification in nonseparable count data instrumental variable models
This paper investigates undesirable limitations of widely used count data instrumental variable models. To overcome the limitations, I propose a partially identifying single-equation model that requires neither strong separability of unobserved heterogeneity nor a triangular system. Sharp bounds (identified sets) of structural features are characterised by conditional moment inequalities. Numerical examples show that the size of an identified set can be very small when the support of an outcome is rich or instruments are strong. An algorithm for estimation and inference is presented. I illustrate the usefulness of the proposed model in an empirical application to effects of supplemental insurance on healthcare utilisation.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.