基于多智能体深度强化学习的输送带路径连续控制算法

Q3 Mathematics
Yaroslav Zhurba, A. Filchenkov, A. Azarov, A. Shalyto
{"title":"基于多智能体深度强化学习的输送带路径连续控制算法","authors":"Yaroslav Zhurba, A. Filchenkov, A. Azarov, A. Shalyto","doi":"10.31799/1684-8853-2022-6-10-19","DOIUrl":null,"url":null,"abstract":"Introduction: We consider the problem of routing of piece cargo by a conveyor system. When moving cargo pieces, it is necessary not only to minimize the time of transportation, but also to minimize the energy spent on it. Purpose: Development of a routing algorithm that is adaptive to changes in the topology of the routing graph and is able to optimize the delivery time and the consumed energy. Results: We propose an algorithm based on multi-agent deep reinforcement learning that places agents at the vertices of a conveyor network graph and uses a new state value function. The algorithm has two tunable parameters: the length of the path along which the state value function is calculated, and the learning coefficient. Through the selection of parameters, we have revealed that the optimal values are 2 and 1, respectively. An experimental study of the algorithm using a simulation model has shown that it allows to reduce the number of collisions of moving objects to zero, demonstrates stable results for both optimized scores, and also leads to a lower energy consumption compared with the method used as a baseline. Practical relevance: The proposed algorithm can be used to reduce delivery time and energy when managing conveyor systems.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous control algorithms for conveyer belt routing based on multi-agent deep reinforcement learning\",\"authors\":\"Yaroslav Zhurba, A. Filchenkov, A. Azarov, A. Shalyto\",\"doi\":\"10.31799/1684-8853-2022-6-10-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: We consider the problem of routing of piece cargo by a conveyor system. When moving cargo pieces, it is necessary not only to minimize the time of transportation, but also to minimize the energy spent on it. Purpose: Development of a routing algorithm that is adaptive to changes in the topology of the routing graph and is able to optimize the delivery time and the consumed energy. Results: We propose an algorithm based on multi-agent deep reinforcement learning that places agents at the vertices of a conveyor network graph and uses a new state value function. The algorithm has two tunable parameters: the length of the path along which the state value function is calculated, and the learning coefficient. Through the selection of parameters, we have revealed that the optimal values are 2 and 1, respectively. An experimental study of the algorithm using a simulation model has shown that it allows to reduce the number of collisions of moving objects to zero, demonstrates stable results for both optimized scores, and also leads to a lower energy consumption compared with the method used as a baseline. Practical relevance: The proposed algorithm can be used to reduce delivery time and energy when managing conveyor systems.\",\"PeriodicalId\":36977,\"journal\":{\"name\":\"Informatsionno-Upravliaiushchie Sistemy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatsionno-Upravliaiushchie Sistemy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/1684-8853-2022-6-10-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2022-6-10-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

简介:我们考虑的问题是由一个输送系统的成件货物的路线。在搬运货物件时,不仅要尽量减少运输时间,而且要尽量减少在运输上花费的能量。目的:开发一种能够适应路由图拓扑变化、优化交付时间和能耗的路由算法。结果:我们提出了一种基于多智能体深度强化学习的算法,该算法将智能体放置在传送带网络图的顶点上,并使用新的状态值函数。该算法有两个可调参数:计算状态值函数的路径长度和学习系数。通过参数的选择,我们发现最优值分别为2和1。使用仿真模型对该算法进行的实验研究表明,该算法可以将运动物体的碰撞次数减少到零,优化得分的结果稳定,并且与用作基线的方法相比,能耗更低。实际意义:提出的算法可以用来减少运输时间和能源时,管理输送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous control algorithms for conveyer belt routing based on multi-agent deep reinforcement learning
Introduction: We consider the problem of routing of piece cargo by a conveyor system. When moving cargo pieces, it is necessary not only to minimize the time of transportation, but also to minimize the energy spent on it. Purpose: Development of a routing algorithm that is adaptive to changes in the topology of the routing graph and is able to optimize the delivery time and the consumed energy. Results: We propose an algorithm based on multi-agent deep reinforcement learning that places agents at the vertices of a conveyor network graph and uses a new state value function. The algorithm has two tunable parameters: the length of the path along which the state value function is calculated, and the learning coefficient. Through the selection of parameters, we have revealed that the optimal values are 2 and 1, respectively. An experimental study of the algorithm using a simulation model has shown that it allows to reduce the number of collisions of moving objects to zero, demonstrates stable results for both optimized scores, and also leads to a lower energy consumption compared with the method used as a baseline. Practical relevance: The proposed algorithm can be used to reduce delivery time and energy when managing conveyor systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信