Hengjie Shen, Minghai Li, Yan Wang, Hewu Wang, Xuning Feng, Juan Wang
{"title":"汇流通道液冷结构对锂离子电池热性能的影响","authors":"Hengjie Shen, Minghai Li, Yan Wang, Hewu Wang, Xuning Feng, Juan Wang","doi":"10.1115/1.4062080","DOIUrl":null,"url":null,"abstract":"\n In this study, based on the liquid cooling method, A confluence channel structure is proposed, and the heat generation model in the discharge process of three-dimensional battery module is established. The effects of channel structure, inlet mass flow rate and coolant flow direction on the heat generation of battery module were studied by control variable method. Simulation results show that the confluence channel structure ( e ) shows good cooling effect on the battery temperature when controlling the 5 C discharge of the battery module. In addition, compared with the straight channel under the same working condition. In the discharge process of battery module, Average temperature amplitude in battery module decreased by 17.3 %, the inlet and outlet pressure is reduced by 16.47 %, and the maximum temperature amplitude is reduced by 20.3 %. Effectively improve temperature uniformity and reduce pressure drop. The problem of uneven temperature distribution caused by uneven velocity distribution of coolant in traditional straight channel is improved. At the same time, the design of the confluence structure accelerates the heat transfer of the channel plate and provides a new idea for the design of the cooling channel.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Liquid Cooling Structure of Confluence Channel on Thermal Performance of Lithium-Ion Batteries\",\"authors\":\"Hengjie Shen, Minghai Li, Yan Wang, Hewu Wang, Xuning Feng, Juan Wang\",\"doi\":\"10.1115/1.4062080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, based on the liquid cooling method, A confluence channel structure is proposed, and the heat generation model in the discharge process of three-dimensional battery module is established. The effects of channel structure, inlet mass flow rate and coolant flow direction on the heat generation of battery module were studied by control variable method. Simulation results show that the confluence channel structure ( e ) shows good cooling effect on the battery temperature when controlling the 5 C discharge of the battery module. In addition, compared with the straight channel under the same working condition. In the discharge process of battery module, Average temperature amplitude in battery module decreased by 17.3 %, the inlet and outlet pressure is reduced by 16.47 %, and the maximum temperature amplitude is reduced by 20.3 %. Effectively improve temperature uniformity and reduce pressure drop. The problem of uneven temperature distribution caused by uneven velocity distribution of coolant in traditional straight channel is improved. At the same time, the design of the confluence structure accelerates the heat transfer of the channel plate and provides a new idea for the design of the cooling channel.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062080\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Effect of Liquid Cooling Structure of Confluence Channel on Thermal Performance of Lithium-Ion Batteries
In this study, based on the liquid cooling method, A confluence channel structure is proposed, and the heat generation model in the discharge process of three-dimensional battery module is established. The effects of channel structure, inlet mass flow rate and coolant flow direction on the heat generation of battery module were studied by control variable method. Simulation results show that the confluence channel structure ( e ) shows good cooling effect on the battery temperature when controlling the 5 C discharge of the battery module. In addition, compared with the straight channel under the same working condition. In the discharge process of battery module, Average temperature amplitude in battery module decreased by 17.3 %, the inlet and outlet pressure is reduced by 16.47 %, and the maximum temperature amplitude is reduced by 20.3 %. Effectively improve temperature uniformity and reduce pressure drop. The problem of uneven temperature distribution caused by uneven velocity distribution of coolant in traditional straight channel is improved. At the same time, the design of the confluence structure accelerates the heat transfer of the channel plate and provides a new idea for the design of the cooling channel.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.