夹层材料的晶体学设计

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY
A. Renuka Balakrishna
{"title":"夹层材料的晶体学设计","authors":"A. Renuka Balakrishna","doi":"10.1115/1.4054858","DOIUrl":null,"url":null,"abstract":"\n Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to ~10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Crystallographic Design of Intercalation Materials\",\"authors\":\"A. Renuka Balakrishna\",\"doi\":\"10.1115/1.4054858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to ~10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054858\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054858","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

摘要

插层材料是可逆储能的有前途的候选者,例如用作锂电池电极、储氢化合物和电致变色材料。阻碍这些材料更广泛使用的一个重要问题是,它们在嵌入过程中发生结构转变(高达约10%的晶格应变),使材料膨胀,形成微裂纹,并最终导致材料失效。除了晶格的结构转变外,插层材料的晶体结构在控制离子传输特性、产生相分离微观结构以及与晶体缺陷的弹性相互作用方面发挥着关键作用。在这篇综述中,我概述了晶格的结构转变、相变微观结构和晶体缺陷如何影响插层材料的化学机械性能。在每一节中,我都指出了晶体设计插层化合物以提高其性能和寿命的关键挑战和机遇。我主要引用了文献中用于可充电电池的插层阴极的例子,然而,所确定的挑战和机遇可以转移到更广泛的插层化合物中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallographic Design of Intercalation Materials
Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to ~10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信