Yuta Fukushima, K. Itaka
{"title":"mRNA治疗中枢神经系统疾病","authors":"Yuta Fukushima, K. Itaka","doi":"10.2745/dds.37.247","DOIUrl":null,"url":null,"abstract":"The high efficacy of mRNA COVID-19 vaccine encourages the wider application of mRNA therapeutics. Protein replacement therapy with mRNA therapeutics is a promising alternative DDS approach for administering trophic factor proteins in central nervous system disorders or enzyme replacement therapy in inherited enzyme deficient diseases. Although the concept to deliver the mRNA in vivo as a drug was demonstrated as early as 1990, mRNA instability hindered subsequent research development. The polymer-based carrier, polyplex nanomicelle, is a novel carrier for in vivo mRNA administration. Here, we introduce the researches of in vivo mRNA administration using the nanomicelle carrier to treat animal models, especially focusing on the central nervous system disorders including Alzheimer’s disease, spinal cord injury and ischemic brain disease. We discuss the advantages of mRNA therapeutics and the characteristics of diseases which are highly suitable for mRNA therapeutics. © 2022, Japan Society of Drug Delivery System. All rights reserved.","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mRNA therapeutics for central nervous system disorders\",\"authors\":\"Yuta Fukushima, K. Itaka\",\"doi\":\"10.2745/dds.37.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high efficacy of mRNA COVID-19 vaccine encourages the wider application of mRNA therapeutics. Protein replacement therapy with mRNA therapeutics is a promising alternative DDS approach for administering trophic factor proteins in central nervous system disorders or enzyme replacement therapy in inherited enzyme deficient diseases. Although the concept to deliver the mRNA in vivo as a drug was demonstrated as early as 1990, mRNA instability hindered subsequent research development. The polymer-based carrier, polyplex nanomicelle, is a novel carrier for in vivo mRNA administration. Here, we introduce the researches of in vivo mRNA administration using the nanomicelle carrier to treat animal models, especially focusing on the central nervous system disorders including Alzheimer’s disease, spinal cord injury and ischemic brain disease. We discuss the advantages of mRNA therapeutics and the characteristics of diseases which are highly suitable for mRNA therapeutics. © 2022, Japan Society of Drug Delivery System. All rights reserved.\",\"PeriodicalId\":11331,\"journal\":{\"name\":\"Drug Delivery System\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2745/dds.37.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2745/dds.37.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
mRNA therapeutics for central nervous system disorders
The high efficacy of mRNA COVID-19 vaccine encourages the wider application of mRNA therapeutics. Protein replacement therapy with mRNA therapeutics is a promising alternative DDS approach for administering trophic factor proteins in central nervous system disorders or enzyme replacement therapy in inherited enzyme deficient diseases. Although the concept to deliver the mRNA in vivo as a drug was demonstrated as early as 1990, mRNA instability hindered subsequent research development. The polymer-based carrier, polyplex nanomicelle, is a novel carrier for in vivo mRNA administration. Here, we introduce the researches of in vivo mRNA administration using the nanomicelle carrier to treat animal models, especially focusing on the central nervous system disorders including Alzheimer’s disease, spinal cord injury and ischemic brain disease. We discuss the advantages of mRNA therapeutics and the characteristics of diseases which are highly suitable for mRNA therapeutics. © 2022, Japan Society of Drug Delivery System. All rights reserved.