政治文本即数据的多标签预测

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE
Aaron Erlich, S. G. Dantas, Benjamin E. Bagozzi, Daniel Berliner, Brian Palmer-Rubin
{"title":"政治文本即数据的多标签预测","authors":"Aaron Erlich, S. G. Dantas, Benjamin E. Bagozzi, Daniel Berliner, Brian Palmer-Rubin","doi":"10.1017/pan.2021.15","DOIUrl":null,"url":null,"abstract":"Abstract Political scientists increasingly use supervised machine learning to code multiple relevant labels from a single set of texts. The current “best practice” of individually applying supervised machine learning to each label ignores information on inter-label association(s), and is likely to under-perform as a result. We introduce multi-label prediction as a solution to this problem. After reviewing the multi-label prediction framework, we apply it to code multiple features of (i) access to information requests made to the Mexican government and (ii) country-year human rights reports. We find that multi-label prediction outperforms standard supervised learning approaches, even in instances where the correlations among one’s multiple labels are low.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"30 1","pages":"463 - 480"},"PeriodicalIF":4.7000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/pan.2021.15","citationCount":"6","resultStr":"{\"title\":\"Multi-Label Prediction for Political Text-as-Data\",\"authors\":\"Aaron Erlich, S. G. Dantas, Benjamin E. Bagozzi, Daniel Berliner, Brian Palmer-Rubin\",\"doi\":\"10.1017/pan.2021.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Political scientists increasingly use supervised machine learning to code multiple relevant labels from a single set of texts. The current “best practice” of individually applying supervised machine learning to each label ignores information on inter-label association(s), and is likely to under-perform as a result. We introduce multi-label prediction as a solution to this problem. After reviewing the multi-label prediction framework, we apply it to code multiple features of (i) access to information requests made to the Mexican government and (ii) country-year human rights reports. We find that multi-label prediction outperforms standard supervised learning approaches, even in instances where the correlations among one’s multiple labels are low.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"30 1\",\"pages\":\"463 - 480\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/pan.2021.15\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2021.15\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2021.15","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 6

摘要

政治学家越来越多地使用监督机器学习从一组文本中编码多个相关标签。目前将监督机器学习单独应用于每个标签的“最佳实践”忽略了标签间关联的信息,因此可能表现不佳。我们引入多标签预测来解决这个问题。在审查了多标签预测框架之后,我们将其应用于(i)向墨西哥政府提出的信息获取请求和(ii)国别人权报告的多个特征的编码。我们发现,即使在多个标签之间的相关性较低的情况下,多标签预测也优于标准的监督学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Label Prediction for Political Text-as-Data
Abstract Political scientists increasingly use supervised machine learning to code multiple relevant labels from a single set of texts. The current “best practice” of individually applying supervised machine learning to each label ignores information on inter-label association(s), and is likely to under-perform as a result. We introduce multi-label prediction as a solution to this problem. After reviewing the multi-label prediction framework, we apply it to code multiple features of (i) access to information requests made to the Mexican government and (ii) country-year human rights reports. We find that multi-label prediction outperforms standard supervised learning approaches, even in instances where the correlations among one’s multiple labels are low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信