连续时间随机梯度下降:一个中心极限定理

Q1 Mathematics
Justin A. Sirignano, K. Spiliopoulos
{"title":"连续时间随机梯度下降:一个中心极限定理","authors":"Justin A. Sirignano, K. Spiliopoulos","doi":"10.1287/stsy.2019.0050","DOIUrl":null,"url":null,"abstract":"Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem for strongly convex objective functions and, under slightly stronger conditions, for nonconvex objective functions as well. An [Formula: see text] convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0050","citationCount":"27","resultStr":"{\"title\":\"Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem\",\"authors\":\"Justin A. Sirignano, K. Spiliopoulos\",\"doi\":\"10.1287/stsy.2019.0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem for strongly convex objective functions and, under slightly stronger conditions, for nonconvex objective functions as well. An [Formula: see text] convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/stsy.2019.0050\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2019.0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 27

摘要

连续时间随机梯度下降(SGDCT)为连续时间模型的统计学习提供了一种计算效率高的方法,广泛应用于科学、工程和金融等领域。SGDCT算法沿着连续数据流的(有噪声的)下降方向。参数更新发生在连续时间内,并满足随机微分方程。本文通过证明一个中心极限定理,分析了SGDCT算法对强凸目标函数的渐近收敛速度,并在稍强的条件下证明了非凸目标函数的渐近收敛速度。本文还证明了该算法在强凸情况下的收敛率。数学分析是随机分析和统计学习的交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem
Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem for strongly convex objective functions and, under slightly stronger conditions, for nonconvex objective functions as well. An [Formula: see text] convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信