周期环境中的分支布朗运动与脉动行波的存在

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Y-X. Ren, R. Song, Fan Yang
{"title":"周期环境中的分支布朗运动与脉动行波的存在","authors":"Y-X. Ren, R. Song, Fan Yang","doi":"10.1214/23-ejp960","DOIUrl":null,"url":null,"abstract":"We study the limits of the additive and derivative martingales of one-dimensional branching Brownian motion in a periodic environment. Then we prove the existence of pulsating travelling wave solutions of the corresponding F-KPP equation in the supercritical and critical cases by representing the solutions probabilistically in terms of the limits of the additive and derivative martingales. We also prove that there is no pulsating travelling wave solution in the subcritical case. Our main tools are the spine decomposition and martingale change of measures.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Branching Brownian motion in a periodic environment and existence of pulsating traveling waves\",\"authors\":\"Y-X. Ren, R. Song, Fan Yang\",\"doi\":\"10.1214/23-ejp960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the limits of the additive and derivative martingales of one-dimensional branching Brownian motion in a periodic environment. Then we prove the existence of pulsating travelling wave solutions of the corresponding F-KPP equation in the supercritical and critical cases by representing the solutions probabilistically in terms of the limits of the additive and derivative martingales. We also prove that there is no pulsating travelling wave solution in the subcritical case. Our main tools are the spine decomposition and martingale change of measures.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp960\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp960","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了周期环境下一维分支布朗运动的加性和导数鞅的极限。然后,我们证明了相应的F-KPP方程在超临界和临界情况下的脉动行波解的存在性,通过用加性和导数鞅的极限概率地表示这些解。我们还证明了在亚临界情况下不存在脉动行波解。我们的主要工具是测度的脊柱分解和鞅变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branching Brownian motion in a periodic environment and existence of pulsating traveling waves
We study the limits of the additive and derivative martingales of one-dimensional branching Brownian motion in a periodic environment. Then we prove the existence of pulsating travelling wave solutions of the corresponding F-KPP equation in the supercritical and critical cases by representing the solutions probabilistically in terms of the limits of the additive and derivative martingales. We also prove that there is no pulsating travelling wave solution in the subcritical case. Our main tools are the spine decomposition and martingale change of measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信