决策树中保持一致性的数据库水印算法

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Qianwen Li , Xiang Wang , Qingqi Pei , Xiaohua Chen , Kwok-Yan Lam
{"title":"决策树中保持一致性的数据库水印算法","authors":"Qianwen Li ,&nbsp;Xiang Wang ,&nbsp;Qingqi Pei ,&nbsp;Xiaohua Chen ,&nbsp;Kwok-Yan Lam","doi":"10.1016/j.dcan.2022.12.015","DOIUrl":null,"url":null,"abstract":"<div><div>Database watermarking technologies provide an effective solution to data security problems by embedding the watermark in the database to prove copyright or trace the source of data leakage. However, when the watermarked database is used for data mining model building, such as decision trees, it may cause a different mining result in comparison with the result from the original database caused by the distortion of watermark embedding. Traditional watermarking algorithms mainly consider the statistical distortion of data, such as the mean square error, but very few consider the effect of the watermark on database mining. Therefore, in this paper, a consistency preserving database watermarking algorithm is proposed for decision trees. First, label classification statistics and label state transfer methods are proposed to adjust the watermarked data so that the model structure of the watermarked decision tree is the same as that of the original decision tree. Then, the splitting values of the decision tree are adjusted according to the defined constraint equations. Finally, the adjusted database can obtain a decision tree consistent with the original decision tree. The experimental results demonstrated that the proposed algorithm does not corrupt the watermarks, and makes the watermarked decision tree consistent with the original decision tree with a small distortion.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1851-1863"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistency preserving database watermarking algorithm for decision trees\",\"authors\":\"Qianwen Li ,&nbsp;Xiang Wang ,&nbsp;Qingqi Pei ,&nbsp;Xiaohua Chen ,&nbsp;Kwok-Yan Lam\",\"doi\":\"10.1016/j.dcan.2022.12.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Database watermarking technologies provide an effective solution to data security problems by embedding the watermark in the database to prove copyright or trace the source of data leakage. However, when the watermarked database is used for data mining model building, such as decision trees, it may cause a different mining result in comparison with the result from the original database caused by the distortion of watermark embedding. Traditional watermarking algorithms mainly consider the statistical distortion of data, such as the mean square error, but very few consider the effect of the watermark on database mining. Therefore, in this paper, a consistency preserving database watermarking algorithm is proposed for decision trees. First, label classification statistics and label state transfer methods are proposed to adjust the watermarked data so that the model structure of the watermarked decision tree is the same as that of the original decision tree. Then, the splitting values of the decision tree are adjusted according to the defined constraint equations. Finally, the adjusted database can obtain a decision tree consistent with the original decision tree. The experimental results demonstrated that the proposed algorithm does not corrupt the watermarks, and makes the watermarked decision tree consistent with the original decision tree with a small distortion.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 6\",\"pages\":\"Pages 1851-1863\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002838\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002838","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistency preserving database watermarking algorithm for decision trees
Database watermarking technologies provide an effective solution to data security problems by embedding the watermark in the database to prove copyright or trace the source of data leakage. However, when the watermarked database is used for data mining model building, such as decision trees, it may cause a different mining result in comparison with the result from the original database caused by the distortion of watermark embedding. Traditional watermarking algorithms mainly consider the statistical distortion of data, such as the mean square error, but very few consider the effect of the watermark on database mining. Therefore, in this paper, a consistency preserving database watermarking algorithm is proposed for decision trees. First, label classification statistics and label state transfer methods are proposed to adjust the watermarked data so that the model structure of the watermarked decision tree is the same as that of the original decision tree. Then, the splitting values of the decision tree are adjusted according to the defined constraint equations. Finally, the adjusted database can obtain a decision tree consistent with the original decision tree. The experimental results demonstrated that the proposed algorithm does not corrupt the watermarks, and makes the watermarked decision tree consistent with the original decision tree with a small distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信