明渠流动方程的研究

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL
William Guerin Gray, Cass Timothy Miller
{"title":"明渠流动方程的研究","authors":"William Guerin Gray, Cass Timothy Miller","doi":"10.1080/00221686.2022.2106597","DOIUrl":null,"url":null,"abstract":"The traditional equations for describing open channel flow have appeared in the literature for decades and are so ingrained that they might seem to be statements of settled science. Careful derivations that detail assumptions and approximations relied upon in the formulation are mostly absent. We derive mass, momentum, and energy equations by averaging their small-scale counterparts and formulate forms that are Galilean invariant as required by continuum mechanics. Averaging is over a time increment and a spatial region in a single step, clarifying the need for closure relations. The derivation leads to the Boussinesq tensor and Coriolis vector as rigorous generalizations of the Boussinesq and Coriolis coefficients typically proposed. Examples are provided for the computation of these coefficients from published data. The approach employed here can be extended to systems such as pipe flow or shallow water equations, and the Galilean invariant forms are also suitable for entropy generation analyses.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":"61 1","pages":"1 - 17"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equations of open channel flow\",\"authors\":\"William Guerin Gray, Cass Timothy Miller\",\"doi\":\"10.1080/00221686.2022.2106597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional equations for describing open channel flow have appeared in the literature for decades and are so ingrained that they might seem to be statements of settled science. Careful derivations that detail assumptions and approximations relied upon in the formulation are mostly absent. We derive mass, momentum, and energy equations by averaging their small-scale counterparts and formulate forms that are Galilean invariant as required by continuum mechanics. Averaging is over a time increment and a spatial region in a single step, clarifying the need for closure relations. The derivation leads to the Boussinesq tensor and Coriolis vector as rigorous generalizations of the Boussinesq and Coriolis coefficients typically proposed. Examples are provided for the computation of these coefficients from published data. The approach employed here can be extended to systems such as pipe flow or shallow water equations, and the Galilean invariant forms are also suitable for entropy generation analyses.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":\"61 1\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2022.2106597\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2022.2106597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

描述明渠流量的传统方程已经在文献中出现了几十年,而且根深蒂固,它们似乎是既定科学的陈述。大多数情况下都没有详细推导公式中所依赖的假设和近似值。我们通过对质量、动量和能量方程的小规模对应方程求平均值来推导它们,并根据连续介质力学的要求,形成伽利略不变量的形式。平均是在一个时间增量和一个空间区域上的一个单一步骤,阐明了闭合关系的必要性。该推导导致Boussinesq张量和Coriolis向量作为Boussinesk系数和Corioolis系数的严格推广。提供了根据公布的数据计算这些系数的示例。这里使用的方法可以扩展到管道流或浅水方程等系统,伽利略不变量形式也适用于熵生成分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the equations of open channel flow
The traditional equations for describing open channel flow have appeared in the literature for decades and are so ingrained that they might seem to be statements of settled science. Careful derivations that detail assumptions and approximations relied upon in the formulation are mostly absent. We derive mass, momentum, and energy equations by averaging their small-scale counterparts and formulate forms that are Galilean invariant as required by continuum mechanics. Averaging is over a time increment and a spatial region in a single step, clarifying the need for closure relations. The derivation leads to the Boussinesq tensor and Coriolis vector as rigorous generalizations of the Boussinesq and Coriolis coefficients typically proposed. Examples are provided for the computation of these coefficients from published data. The approach employed here can be extended to systems such as pipe flow or shallow water equations, and the Galilean invariant forms are also suitable for entropy generation analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信