近似厄米度量和近似厄米流的解之间的一致等价

IF 0.4 4区 数学 Q4 MATHEMATICS
Masaya Kawamura
{"title":"近似厄米度量和近似厄米流的解之间的一致等价","authors":"Masaya Kawamura","doi":"10.2996/KMJ44102","DOIUrl":null,"url":null,"abstract":"On compact almost complex manifolds, we defined two parabolic flows, which are called the almost Hermitian flow and the almost Hermitian curvature flow in [3]. We show that the uniform equivalence between almost Hermitian metrics and the solution to the almost Hermitian flow by using the method in [6]. This uniform equivalence holds for the almost Hermitian curvature flow as well.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniform equivalence between almost Hermitian metrics and the solution to the almost Hermitian flow\",\"authors\":\"Masaya Kawamura\",\"doi\":\"10.2996/KMJ44102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On compact almost complex manifolds, we defined two parabolic flows, which are called the almost Hermitian flow and the almost Hermitian curvature flow in [3]. We show that the uniform equivalence between almost Hermitian metrics and the solution to the almost Hermitian flow by using the method in [6]. This uniform equivalence holds for the almost Hermitian curvature flow as well.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/KMJ44102\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/KMJ44102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在紧致几乎复流形上,我们定义了两种抛物流,它们被称为[3]中的几乎厄米流和几乎厄米曲率流。我们用[6]中的方法证明了几乎厄米度量与几乎厄米流解之间的一致等价。这个均匀等价也适用于厄米曲率流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform equivalence between almost Hermitian metrics and the solution to the almost Hermitian flow
On compact almost complex manifolds, we defined two parabolic flows, which are called the almost Hermitian flow and the almost Hermitian curvature flow in [3]. We show that the uniform equivalence between almost Hermitian metrics and the solution to the almost Hermitian flow by using the method in [6]. This uniform equivalence holds for the almost Hermitian curvature flow as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信