关于极值理论中密度函数与Rényi熵的收敛速度

IF 0.4 Q4 STATISTICS & PROBABILITY
Ali Saeb
{"title":"关于极值理论中密度函数与Rényi熵的收敛速度","authors":"Ali Saeb","doi":"10.1090/tpms/1191","DOIUrl":null,"url":null,"abstract":"De Haan and Resnick [Ann. Probab. 10 (1982), no. 2, 396–413] have shown that the Rényi entropy of order \n\n \n β\n \\beta\n \n\n (\n\n \n \n β\n >\n 1\n \n \\beta >1\n \n\n) of normalized sample maximum of independent and identically distributed (iid) random variables with continuous differentiable density converges to the Rényi entropy of order \n\n \n β\n \\beta\n \n\n of a max stable law. In this paper, we review the rate of convergence for density function in extreme value theory. Finally, we study the rate of convergence for Rényi entropy in the case of normalized sample maxima.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comment on rates of convergence for density function in extreme value theory and Rényi entropy\",\"authors\":\"Ali Saeb\",\"doi\":\"10.1090/tpms/1191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"De Haan and Resnick [Ann. Probab. 10 (1982), no. 2, 396–413] have shown that the Rényi entropy of order \\n\\n \\n β\\n \\\\beta\\n \\n\\n (\\n\\n \\n \\n β\\n >\\n 1\\n \\n \\\\beta >1\\n \\n\\n) of normalized sample maximum of independent and identically distributed (iid) random variables with continuous differentiable density converges to the Rényi entropy of order \\n\\n \\n β\\n \\\\beta\\n \\n\\n of a max stable law. In this paper, we review the rate of convergence for density function in extreme value theory. Finally, we study the rate of convergence for Rényi entropy in the case of normalized sample maxima.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

De Haan和Resnick[Ann.Probab.10(1982),no.2396–413]已经表明,具有连续可微密度的独立同分布(iid)随机变量的归一化样本极大值的β\β阶Rényi熵(β>1\β>1)收敛于极大稳定律的β\贝塔阶Rény熵。本文讨论了极值理论中密度函数的收敛速度。最后,我们研究了Rényi熵在归一化样本最大值情况下的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comment on rates of convergence for density function in extreme value theory and Rényi entropy
De Haan and Resnick [Ann. Probab. 10 (1982), no. 2, 396–413] have shown that the Rényi entropy of order β \beta ( β > 1 \beta >1 ) of normalized sample maximum of independent and identically distributed (iid) random variables with continuous differentiable density converges to the Rényi entropy of order β \beta of a max stable law. In this paper, we review the rate of convergence for density function in extreme value theory. Finally, we study the rate of convergence for Rényi entropy in the case of normalized sample maxima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信