几何上不可约的p进局部系统是de Rham直到一个扭曲

IF 2.3 1区 数学 Q1 MATHEMATICS
A. Petrov
{"title":"几何上不可约的p进局部系统是de Rham直到一个扭曲","authors":"A. Petrov","doi":"10.1215/00127094-2022-0027","DOIUrl":null,"url":null,"abstract":"We prove that any geometrically irreducible $\\overline{\\mathbb{Q}}_p$-local system on a smooth algebraic variety over a $p$-adic field $K$ becomes de Rham after a twist by a character of the Galois group of $K$. In particular, for any geometrically irreducible $\\overline{\\mathbb{Q}}_p$-local system on a smooth variety over a number field the associated projective representation of the fundamental group automatically satisfies the assumptions of the relative Fontaine-Mazur conjecture. The proof uses $p$-adic Simpson and Riemann-Hilbert correspondences of Diao-Lan-Liu-Zhu and the Sen operator on the decompletions of those developed by Shimizu. Along the way, we observe that a $p$-adic local system on a smooth geometrically connected algebraic variety over $K$ is Hodge-Tate if its stalk at one closed point is a Hodge-Tate Galois representation. Moreover, we prove a version of the main theorem for local systems with arbitrary geometric monodromy, which allows us to conclude that the Galois action on the pro-algebraic completion of the fundamental group is de Rham.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Geometrically irreducible p-adic local systems are de Rham up to a twist\",\"authors\":\"A. Petrov\",\"doi\":\"10.1215/00127094-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any geometrically irreducible $\\\\overline{\\\\mathbb{Q}}_p$-local system on a smooth algebraic variety over a $p$-adic field $K$ becomes de Rham after a twist by a character of the Galois group of $K$. In particular, for any geometrically irreducible $\\\\overline{\\\\mathbb{Q}}_p$-local system on a smooth variety over a number field the associated projective representation of the fundamental group automatically satisfies the assumptions of the relative Fontaine-Mazur conjecture. The proof uses $p$-adic Simpson and Riemann-Hilbert correspondences of Diao-Lan-Liu-Zhu and the Sen operator on the decompletions of those developed by Shimizu. Along the way, we observe that a $p$-adic local system on a smooth geometrically connected algebraic variety over $K$ is Hodge-Tate if its stalk at one closed point is a Hodge-Tate Galois representation. Moreover, we prove a version of the main theorem for local systems with arbitrary geometric monodromy, which allows us to conclude that the Galois action on the pro-algebraic completion of the fundamental group is de Rham.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0027\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0027","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

我们证明了在$p$-adic域$K$上的光滑代数变种上的任何几何不可约$\overline{\mathbb{Q}}_p$-局部系统在被$K$的Galois群的一个字符扭曲后成为de Rham。特别地,对于数域上光滑变种上的任何几何不可约$\overline{\mathbb{Q}}_p$-局部系统,基本群的相关投影表示自动满足相对Fontaine-Mazur猜想的假设。该证明使用了刁兰刘竺的$p$adicSimpson和Riemann-Hilbert对应关系,以及Shimizu提出的Sen算子对其反编译。在这一过程中,我们观察到$K$上光滑几何连通代数簇上的$p$adic局部系统是Hodge-Tate,如果它在一个闭点上的柄是Hodge-Tate Galois表示。此外,我们证明了具有任意几何单调的局部系统的主要定理的一个版本,这使我们能够得出结论,基本群的亲代数完备上的Galois作用是de Rham。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically irreducible p-adic local systems are de Rham up to a twist
We prove that any geometrically irreducible $\overline{\mathbb{Q}}_p$-local system on a smooth algebraic variety over a $p$-adic field $K$ becomes de Rham after a twist by a character of the Galois group of $K$. In particular, for any geometrically irreducible $\overline{\mathbb{Q}}_p$-local system on a smooth variety over a number field the associated projective representation of the fundamental group automatically satisfies the assumptions of the relative Fontaine-Mazur conjecture. The proof uses $p$-adic Simpson and Riemann-Hilbert correspondences of Diao-Lan-Liu-Zhu and the Sen operator on the decompletions of those developed by Shimizu. Along the way, we observe that a $p$-adic local system on a smooth geometrically connected algebraic variety over $K$ is Hodge-Tate if its stalk at one closed point is a Hodge-Tate Galois representation. Moreover, we prove a version of the main theorem for local systems with arbitrary geometric monodromy, which allows us to conclude that the Galois action on the pro-algebraic completion of the fundamental group is de Rham.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信