{"title":"枯竭林业资源保护的数学模型","authors":"Masitawal Demsie Goshu, M. Endalew","doi":"10.1111/nrm.12338","DOIUrl":null,"url":null,"abstract":"In this article, a nonlinear mathematical model is constructed to investigate the conservation of depleted forest resources due to the increase of population and associated pressures. Fundamental equations governing the dynamics of the system are defined by the set of highly nonlinear ordinary differential equations and solved numerically. The model is analyzed by using the nature of stability analysis theory of dynamical system. The numerical solutions and simulations of the system are carried out using ODE45 subroutine of MATLAB. Presentations of results are revealed using graphs and interpreted biologically. It is noted that the increase of population density and associated pressures causes the depletion of forestry resources. However, forest resources can be conserved by controlling man made fire, toxicant activities, applying economical incentives and technological efforts.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mathematical modeling on conservation of depleted forestry resources\",\"authors\":\"Masitawal Demsie Goshu, M. Endalew\",\"doi\":\"10.1111/nrm.12338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a nonlinear mathematical model is constructed to investigate the conservation of depleted forest resources due to the increase of population and associated pressures. Fundamental equations governing the dynamics of the system are defined by the set of highly nonlinear ordinary differential equations and solved numerically. The model is analyzed by using the nature of stability analysis theory of dynamical system. The numerical solutions and simulations of the system are carried out using ODE45 subroutine of MATLAB. Presentations of results are revealed using graphs and interpreted biologically. It is noted that the increase of population density and associated pressures causes the depletion of forestry resources. However, forest resources can be conserved by controlling man made fire, toxicant activities, applying economical incentives and technological efforts.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12338\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12338","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mathematical modeling on conservation of depleted forestry resources
In this article, a nonlinear mathematical model is constructed to investigate the conservation of depleted forest resources due to the increase of population and associated pressures. Fundamental equations governing the dynamics of the system are defined by the set of highly nonlinear ordinary differential equations and solved numerically. The model is analyzed by using the nature of stability analysis theory of dynamical system. The numerical solutions and simulations of the system are carried out using ODE45 subroutine of MATLAB. Presentations of results are revealed using graphs and interpreted biologically. It is noted that the increase of population density and associated pressures causes the depletion of forestry resources. However, forest resources can be conserved by controlling man made fire, toxicant activities, applying economical incentives and technological efforts.
期刊介绍:
Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.