{"title":"智能垃圾收集的动态多车厢车辆路径问题","authors":"Yousra Bouleft, Ahmed Elhilali Alaoui","doi":"10.3390/asi6010030","DOIUrl":null,"url":null,"abstract":"The rapid increase in urbanization results in an increase in the volume of municipal solid waste produced every day, causing overflow of the garbage cans and thus distorting the city’s appearance; for this and environmental reasons, smart cities involve the use of modern technologies for intelligent and efficient waste management. Smart bins in urban environments contain sensors that measure the status of containers in real-time and trigger wireless alarms if the container reaches a predetermined threshold, and then communicate the information to the operations center, which then sends vehicles to collect the waste from the selected stations in order to collect a significant waste amount and reduce transportation costs. In this article, we will address the issue of the Dynamic Multi-Compartmental Vehicle Routing Problem (DM-CVRP) for selective and intelligent waste collection. This problem is summarized as a linear mathematical programming model to define optimal dynamic routes to minimize the total cost, which are the transportation costs and the penalty costs caused by exceeding the bin capacity. The hybridized genetic algorithm (GA) is proposed to solve this problem, and the effectiveness of the proposed approach is verified by extensive numerical experiments on instances given by Valorsul, with some modifications to adapt these data to our problem. Then we were able to ensure the effectiveness of our approach based on the results in the static and dynamic cases, which are very encouraging.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic Multi-Compartment Vehicle Routing Problem for Smart Waste Collection\",\"authors\":\"Yousra Bouleft, Ahmed Elhilali Alaoui\",\"doi\":\"10.3390/asi6010030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid increase in urbanization results in an increase in the volume of municipal solid waste produced every day, causing overflow of the garbage cans and thus distorting the city’s appearance; for this and environmental reasons, smart cities involve the use of modern technologies for intelligent and efficient waste management. Smart bins in urban environments contain sensors that measure the status of containers in real-time and trigger wireless alarms if the container reaches a predetermined threshold, and then communicate the information to the operations center, which then sends vehicles to collect the waste from the selected stations in order to collect a significant waste amount and reduce transportation costs. In this article, we will address the issue of the Dynamic Multi-Compartmental Vehicle Routing Problem (DM-CVRP) for selective and intelligent waste collection. This problem is summarized as a linear mathematical programming model to define optimal dynamic routes to minimize the total cost, which are the transportation costs and the penalty costs caused by exceeding the bin capacity. The hybridized genetic algorithm (GA) is proposed to solve this problem, and the effectiveness of the proposed approach is verified by extensive numerical experiments on instances given by Valorsul, with some modifications to adapt these data to our problem. Then we were able to ensure the effectiveness of our approach based on the results in the static and dynamic cases, which are very encouraging.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi6010030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6010030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dynamic Multi-Compartment Vehicle Routing Problem for Smart Waste Collection
The rapid increase in urbanization results in an increase in the volume of municipal solid waste produced every day, causing overflow of the garbage cans and thus distorting the city’s appearance; for this and environmental reasons, smart cities involve the use of modern technologies for intelligent and efficient waste management. Smart bins in urban environments contain sensors that measure the status of containers in real-time and trigger wireless alarms if the container reaches a predetermined threshold, and then communicate the information to the operations center, which then sends vehicles to collect the waste from the selected stations in order to collect a significant waste amount and reduce transportation costs. In this article, we will address the issue of the Dynamic Multi-Compartmental Vehicle Routing Problem (DM-CVRP) for selective and intelligent waste collection. This problem is summarized as a linear mathematical programming model to define optimal dynamic routes to minimize the total cost, which are the transportation costs and the penalty costs caused by exceeding the bin capacity. The hybridized genetic algorithm (GA) is proposed to solve this problem, and the effectiveness of the proposed approach is verified by extensive numerical experiments on instances given by Valorsul, with some modifications to adapt these data to our problem. Then we were able to ensure the effectiveness of our approach based on the results in the static and dynamic cases, which are very encouraging.