精算学中的人工智能——最新进展综述——第2部分

IF 1.5 Q3 BUSINESS, FINANCE
Ronald Richman
{"title":"精算学中的人工智能——最新进展综述——第2部分","authors":"Ronald Richman","doi":"10.1017/S174849952000024X","DOIUrl":null,"url":null,"abstract":"Abstract Rapid advances in artificial intelligence (AI) and machine learning are creating products and services with the potential not only to change the environment in which actuaries operate, but also to provide new opportunities within actuarial science. These advances are based on a modern approach to designing, fitting and applying neural networks, generally referred to as “Deep Learning”. This paper investigates how actuarial science may adapt and evolve in the coming years to incorporate these new techniques and methodologies. Part 1 of this paper provides background on machine learning and deep learning, as well as an heuristic for where actuaries might benefit from applying these techniques. Part 2 of the paper then surveys emerging applications of AI in actuarial science, with examples from mortality modelling, claims reserving, non-life pricing and telematics. For some of the examples, code has been provided on GitHub so that the interested reader can experiment with these techniques for themselves. Part 2 concludes with an outlook on the potential for actuaries to integrate deep learning into their activities. Finally, a supplementary appendix discusses further resources providing more in-depth background on machine learning and deep learning.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"15 1","pages":"230 - 258"},"PeriodicalIF":1.5000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S174849952000024X","citationCount":"18","resultStr":"{\"title\":\"AI in actuarial science – a review of recent advances – part 2\",\"authors\":\"Ronald Richman\",\"doi\":\"10.1017/S174849952000024X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rapid advances in artificial intelligence (AI) and machine learning are creating products and services with the potential not only to change the environment in which actuaries operate, but also to provide new opportunities within actuarial science. These advances are based on a modern approach to designing, fitting and applying neural networks, generally referred to as “Deep Learning”. This paper investigates how actuarial science may adapt and evolve in the coming years to incorporate these new techniques and methodologies. Part 1 of this paper provides background on machine learning and deep learning, as well as an heuristic for where actuaries might benefit from applying these techniques. Part 2 of the paper then surveys emerging applications of AI in actuarial science, with examples from mortality modelling, claims reserving, non-life pricing and telematics. For some of the examples, code has been provided on GitHub so that the interested reader can experiment with these techniques for themselves. Part 2 concludes with an outlook on the potential for actuaries to integrate deep learning into their activities. Finally, a supplementary appendix discusses further resources providing more in-depth background on machine learning and deep learning.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\"15 1\",\"pages\":\"230 - 258\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S174849952000024X\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S174849952000024X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S174849952000024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 18

摘要

摘要人工智能(AI)和机器学习的快速发展正在创造产品和服务,这些产品和服务不仅有可能改变精算师的经营环境,而且有可能在精算科学领域提供新的机会。这些进步是基于设计、拟合和应用神经网络的现代方法,通常被称为“深度学习”。本文研究了精算科学在未来几年如何适应和发展,以纳入这些新技术和方法。本文的第1部分提供了机器学习和深度学习的背景,以及精算师可能从应用这些技术中受益的启发。论文的第2部分调查了人工智能在精算科学中的新兴应用,包括死亡率建模、索赔准备金、非人寿定价和远程信息处理。对于其中一些示例,GitHub上提供了代码,以便感兴趣的读者可以自己尝试这些技术。第2部分最后展望了精算师将深度学习融入其活动的潜力。最后,补充附录讨论了进一步的资源,为机器学习和深度学习提供了更深入的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI in actuarial science – a review of recent advances – part 2
Abstract Rapid advances in artificial intelligence (AI) and machine learning are creating products and services with the potential not only to change the environment in which actuaries operate, but also to provide new opportunities within actuarial science. These advances are based on a modern approach to designing, fitting and applying neural networks, generally referred to as “Deep Learning”. This paper investigates how actuarial science may adapt and evolve in the coming years to incorporate these new techniques and methodologies. Part 1 of this paper provides background on machine learning and deep learning, as well as an heuristic for where actuaries might benefit from applying these techniques. Part 2 of the paper then surveys emerging applications of AI in actuarial science, with examples from mortality modelling, claims reserving, non-life pricing and telematics. For some of the examples, code has been provided on GitHub so that the interested reader can experiment with these techniques for themselves. Part 2 concludes with an outlook on the potential for actuaries to integrate deep learning into their activities. Finally, a supplementary appendix discusses further resources providing more in-depth background on machine learning and deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信