{"title":"用近似不动点理论分析聚合答案集规划的语义","authors":"Linde Vanbesien, M. Bruynooghe, M. Denecker","doi":"10.1017/S1471068422000126","DOIUrl":null,"url":null,"abstract":"Abstract Aggregates provide a concise way to express complex knowledge. The problem of selecting an appropriate formalization of aggregates for answer set programming (ASP) remains unsettled. This paper revisits it from the viewpoint of Approximation Fixpoint Theory (AFT). We introduce an AFT formalization equivalent with the Gelfond–Lifschitz reduct for basic ASP programs and we extend it to handle aggregates. We analyze how existing approaches relate to our framework. We hope this work sheds some new light on the issue of a proper formalization of aggregates.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"523 - 537"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analyzing Semantics of Aggregate Answer Set Programming Using Approximation Fixpoint Theory\",\"authors\":\"Linde Vanbesien, M. Bruynooghe, M. Denecker\",\"doi\":\"10.1017/S1471068422000126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Aggregates provide a concise way to express complex knowledge. The problem of selecting an appropriate formalization of aggregates for answer set programming (ASP) remains unsettled. This paper revisits it from the viewpoint of Approximation Fixpoint Theory (AFT). We introduce an AFT formalization equivalent with the Gelfond–Lifschitz reduct for basic ASP programs and we extend it to handle aggregates. We analyze how existing approaches relate to our framework. We hope this work sheds some new light on the issue of a proper formalization of aggregates.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"22 1\",\"pages\":\"523 - 537\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1471068422000126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Analyzing Semantics of Aggregate Answer Set Programming Using Approximation Fixpoint Theory
Abstract Aggregates provide a concise way to express complex knowledge. The problem of selecting an appropriate formalization of aggregates for answer set programming (ASP) remains unsettled. This paper revisits it from the viewpoint of Approximation Fixpoint Theory (AFT). We introduce an AFT formalization equivalent with the Gelfond–Lifschitz reduct for basic ASP programs and we extend it to handle aggregates. We analyze how existing approaches relate to our framework. We hope this work sheds some new light on the issue of a proper formalization of aggregates.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.