多维标量守恒定律的有限体积格式的积分二次重构

IF 1.2 Q2 MATHEMATICS, APPLIED
Li Chen, Ruo Li, Feng Yang
{"title":"多维标量守恒定律的有限体积格式的积分二次重构","authors":"Li Chen, Ruo Li, Feng Yang","doi":"10.4208/csiam-am.2020-0017","DOIUrl":null,"url":null,"abstract":"We proposed a piecewise quadratic reconstruction method, which is in an integrated style, for finite volume schemes to scalar conservation laws. This quadratic reconstruction is parameter-free, is of third-order accuracy for smooth functions, and is flexible on structured and unstructured grids. The finite volume schemes with the new reconstruction satisfy a local maximum principle. Numerical examples are presented to show that the proposed schemes with a third-order Runge-Kutta method attain the expected order of accuracy.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Integrated Quadratic Reconstruction for Finite Volume Schemes to Scalar Conservation Laws in Multiple Dimensions\",\"authors\":\"Li Chen, Ruo Li, Feng Yang\",\"doi\":\"10.4208/csiam-am.2020-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a piecewise quadratic reconstruction method, which is in an integrated style, for finite volume schemes to scalar conservation laws. This quadratic reconstruction is parameter-free, is of third-order accuracy for smooth functions, and is flexible on structured and unstructured grids. The finite volume schemes with the new reconstruction satisfy a local maximum principle. Numerical examples are presented to show that the proposed schemes with a third-order Runge-Kutta method attain the expected order of accuracy.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.2020-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

针对标量守恒定律的有限体积格式,我们提出了一种积分形式的分段二次重构方法。这种二次重构是无参数的,对于光滑函数具有三阶精度,并且在结构化和非结构化网格上是灵活的。具有新重构的有限体积格式满足局部极大值原理。数值算例表明,所提出的三阶龙格-库塔法格式达到了预期的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integrated Quadratic Reconstruction for Finite Volume Schemes to Scalar Conservation Laws in Multiple Dimensions
We proposed a piecewise quadratic reconstruction method, which is in an integrated style, for finite volume schemes to scalar conservation laws. This quadratic reconstruction is parameter-free, is of third-order accuracy for smooth functions, and is flexible on structured and unstructured grids. The finite volume schemes with the new reconstruction satisfy a local maximum principle. Numerical examples are presented to show that the proposed schemes with a third-order Runge-Kutta method attain the expected order of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信