使用逻辑模型的有效t 0年风险回归

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
T. Martinussen, T. Scheike
{"title":"使用逻辑模型的有效t 0年风险回归","authors":"T. Martinussen, T. Scheike","doi":"10.1111/sjos.12658","DOIUrl":null,"url":null,"abstract":"In some clinical studies patient survival beyond a specific point in time, t0$$ {t}_0 $$ , say, may be of special interest as it may for instance indicate patient cure. To analyze the t0$$ {t}_0 $$ ‐year risk for such patients may be accomplished using logistic regression with appropriate weights (IPWCC) that may further be augmented (AIPWCC) to improve efficiency. In this paper, we derive the most efficient estimator for this problem, which is different from the AIPWCC based on the full data efficient influence function. We first give the result for a survival endpoint and then generalize to the competing risk setting. The proposed estimators superior behavior is illustrated using simulations as well as applying it to some real data concerning the survival of blood and marrow transplanted patients.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient\\n t\\n 0\\n ‐year risk regression using the logistic model\",\"authors\":\"T. Martinussen, T. Scheike\",\"doi\":\"10.1111/sjos.12658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some clinical studies patient survival beyond a specific point in time, t0$$ {t}_0 $$ , say, may be of special interest as it may for instance indicate patient cure. To analyze the t0$$ {t}_0 $$ ‐year risk for such patients may be accomplished using logistic regression with appropriate weights (IPWCC) that may further be augmented (AIPWCC) to improve efficiency. In this paper, we derive the most efficient estimator for this problem, which is different from the AIPWCC based on the full data efficient influence function. We first give the result for a survival endpoint and then generalize to the competing risk setting. The proposed estimators superior behavior is illustrated using simulations as well as applying it to some real data concerning the survival of blood and marrow transplanted patients.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12658\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12658","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient t 0 ‐year risk regression using the logistic model
In some clinical studies patient survival beyond a specific point in time, t0$$ {t}_0 $$ , say, may be of special interest as it may for instance indicate patient cure. To analyze the t0$$ {t}_0 $$ ‐year risk for such patients may be accomplished using logistic regression with appropriate weights (IPWCC) that may further be augmented (AIPWCC) to improve efficiency. In this paper, we derive the most efficient estimator for this problem, which is different from the AIPWCC based on the full data efficient influence function. We first give the result for a survival endpoint and then generalize to the competing risk setting. The proposed estimators superior behavior is illustrated using simulations as well as applying it to some real data concerning the survival of blood and marrow transplanted patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信