Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, Andrea Omicini
{"title":"PSyKE中不透明ML预测器的符号知识提取:平台设计与实验","authors":"Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, Andrea Omicini","doi":"10.3233/ia-210120","DOIUrl":null,"url":null,"abstract":"A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation. Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately, running implementations of most of them are currently either proofs of concept or unavailable. In any case, a unified, coherent software framework supporting them all – as well as their interchange, comparison, and exploitation in arbitrary ML workflows – is currently missing. Accordingly, in this paper we discuss the design of PSyKE, a platform providing general-purpose support to symbolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms. Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a starting point for further symbolic processing—e.g. automated reasoning.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"16 1","pages":"27-48"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments\",\"authors\":\"Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, Andrea Omicini\",\"doi\":\"10.3233/ia-210120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation. Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately, running implementations of most of them are currently either proofs of concept or unavailable. In any case, a unified, coherent software framework supporting them all – as well as their interchange, comparison, and exploitation in arbitrary ML workflows – is currently missing. Accordingly, in this paper we discuss the design of PSyKE, a platform providing general-purpose support to symbolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms. Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a starting point for further symbolic processing—e.g. automated reasoning.\",\"PeriodicalId\":42055,\"journal\":{\"name\":\"Intelligenza Artificiale\",\"volume\":\"16 1\",\"pages\":\"27-48\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligenza Artificiale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ia-210120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ia-210120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments
A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation. Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately, running implementations of most of them are currently either proofs of concept or unavailable. In any case, a unified, coherent software framework supporting them all – as well as their interchange, comparison, and exploitation in arbitrary ML workflows – is currently missing. Accordingly, in this paper we discuss the design of PSyKE, a platform providing general-purpose support to symbolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms. Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a starting point for further symbolic processing—e.g. automated reasoning.