{"title":"平面参数化曲线的流动曲率","authors":"M. Crasmareanu","doi":"10.31801/cfsuasmas.1165123","DOIUrl":null,"url":null,"abstract":"We introduce and study a new frame and a new curvature function for a fixed parametrization of a plane curve. This new frame is called flow since it involves the time-dependent rotation of the usual Frenet flow; the angle of rotation is exactly the current parameter. The flow-curvature is calculated for several examples obtaining the logarithmic spirals (and the circle as limit case) and the Grim Reaper as flat-flow curves. A main result is that the scaling with$\\frac{1}{\\sqrt{2}}$ of both Frenet and flow-frame belong to the same fiber of the Hopf bundle. Moreover, the flow-Fermi-Walker derivative is defined and studied.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The flow-curvature of plane parametrized curves\",\"authors\":\"M. Crasmareanu\",\"doi\":\"10.31801/cfsuasmas.1165123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a new frame and a new curvature function for a fixed parametrization of a plane curve. This new frame is called flow since it involves the time-dependent rotation of the usual Frenet flow; the angle of rotation is exactly the current parameter. The flow-curvature is calculated for several examples obtaining the logarithmic spirals (and the circle as limit case) and the Grim Reaper as flat-flow curves. A main result is that the scaling with$\\\\frac{1}{\\\\sqrt{2}}$ of both Frenet and flow-frame belong to the same fiber of the Hopf bundle. Moreover, the flow-Fermi-Walker derivative is defined and studied.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1165123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1165123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce and study a new frame and a new curvature function for a fixed parametrization of a plane curve. This new frame is called flow since it involves the time-dependent rotation of the usual Frenet flow; the angle of rotation is exactly the current parameter. The flow-curvature is calculated for several examples obtaining the logarithmic spirals (and the circle as limit case) and the Grim Reaper as flat-flow curves. A main result is that the scaling with$\frac{1}{\sqrt{2}}$ of both Frenet and flow-frame belong to the same fiber of the Hopf bundle. Moreover, the flow-Fermi-Walker derivative is defined and studied.