具有细胞增殖的延迟HCV动力学模型的全局稳定性

IF 0.4 Q4 MATHEMATICS, APPLIED
Alexis Nangue, Armel Willy Fokam Tacteu, Ayouba Guedlai
{"title":"具有细胞增殖的延迟HCV动力学模型的全局稳定性","authors":"Alexis Nangue, Armel Willy Fokam Tacteu, Ayouba Guedlai","doi":"10.5206/mase/14918","DOIUrl":null,"url":null,"abstract":"In this work, we propose and investigate a delay cell population model of hepatitis C virus (HCV) infection with cellular proliferation, absorption effect and a nonlinear incidence function. First of all, after having shown the existence of the local solutions of our model, we show the existence of the global solutions and positivity. Moreover, we determine the uninfected equilibrium point and the basic reproduction rate R0, which is a threshold number in mathematical epidemiology. After showing the existence and uniqueness of the infected equilibrium point, we proceed to the study of the local and global stability of this equilibrium. We show that if  R0 < 1, the uninfected equilibrium point is globally asymptotically stable, which means that the disease will disappear and if  R0 > 1, we have a unique infected equilibrium that is globally asymptotically stable under some conditions. Finally, we perform some numerical simulations to illustrate the obtained theoretical results.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global stability of a delay HCV dynamics model with cellular proliferation\",\"authors\":\"Alexis Nangue, Armel Willy Fokam Tacteu, Ayouba Guedlai\",\"doi\":\"10.5206/mase/14918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose and investigate a delay cell population model of hepatitis C virus (HCV) infection with cellular proliferation, absorption effect and a nonlinear incidence function. First of all, after having shown the existence of the local solutions of our model, we show the existence of the global solutions and positivity. Moreover, we determine the uninfected equilibrium point and the basic reproduction rate R0, which is a threshold number in mathematical epidemiology. After showing the existence and uniqueness of the infected equilibrium point, we proceed to the study of the local and global stability of this equilibrium. We show that if  R0 < 1, the uninfected equilibrium point is globally asymptotically stable, which means that the disease will disappear and if  R0 > 1, we have a unique infected equilibrium that is globally asymptotically stable under some conditions. Finally, we perform some numerical simulations to illustrate the obtained theoretical results.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/14918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出并研究了一个具有细胞增殖、吸收效应和非线性发病函数的丙型肝炎病毒(HCV)感染的延迟细胞群模型。首先,在展示了我们模型的局部解的存在性之后,我们展示了全局解和正性的存在性。此外,我们确定了未感染的平衡点和基本繁殖率R0,这是数学流行病学中的阈值。在证明了受感染平衡点的存在性和唯一性之后,我们开始研究该平衡点的局部和全局稳定性。我们证明,如果R0<1,未感染的平衡点是全局渐近稳定的,这意味着疾病将消失;如果R0>1,我们有一个唯一的感染平衡点,在某些条件下是全局渐进稳定的。最后,我们进行了一些数值模拟来说明所获得的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global stability of a delay HCV dynamics model with cellular proliferation
In this work, we propose and investigate a delay cell population model of hepatitis C virus (HCV) infection with cellular proliferation, absorption effect and a nonlinear incidence function. First of all, after having shown the existence of the local solutions of our model, we show the existence of the global solutions and positivity. Moreover, we determine the uninfected equilibrium point and the basic reproduction rate R0, which is a threshold number in mathematical epidemiology. After showing the existence and uniqueness of the infected equilibrium point, we proceed to the study of the local and global stability of this equilibrium. We show that if  R0 < 1, the uninfected equilibrium point is globally asymptotically stable, which means that the disease will disappear and if  R0 > 1, we have a unique infected equilibrium that is globally asymptotically stable under some conditions. Finally, we perform some numerical simulations to illustrate the obtained theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信