保角杀伤形式Kähler几何

IF 0.6 Q3 MATHEMATICS
P. Nagy, U. Semmelmann
{"title":"保角杀伤形式Kähler几何","authors":"P. Nagy, U. Semmelmann","doi":"10.1215/00192082-10088173","DOIUrl":null,"url":null,"abstract":"For Kaehler manifolds we explicitly determine the solution to the conformal Killing form equation in middle degree. In particular, we complete the classification of conformal Killing forms on compact Kaehler manifolds. We give the first examples of conformal Killing forms on Kaehler manifolds not coming from Hamiltonian 2-forms. These are supported by Calabi type manifolds over a Kaehler Einstein base. In this set up we also give structure results and examples for the closely related class of Hermitian Killing forms.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conformal Killing forms in Kähler geometry\",\"authors\":\"P. Nagy, U. Semmelmann\",\"doi\":\"10.1215/00192082-10088173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Kaehler manifolds we explicitly determine the solution to the conformal Killing form equation in middle degree. In particular, we complete the classification of conformal Killing forms on compact Kaehler manifolds. We give the first examples of conformal Killing forms on Kaehler manifolds not coming from Hamiltonian 2-forms. These are supported by Calabi type manifolds over a Kaehler Einstein base. In this set up we also give structure results and examples for the closely related class of Hermitian Killing forms.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10088173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10088173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于Kaehler流形,我们明确地确定了保角Killing型方程的中阶解。特别地,我们完成了紧致Kaehler流形上共形Killing形式的分类。我们给出了Kaehler流形上的保角Killing形式的第一个例子,它们不是来自哈密顿2-形式。这些是由Kaehler-Enstein基上的Calabi型流形支持的。在这一组中,我们还给出了密切相关的一类埃尔米特杀戮形式的结构结果和例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal Killing forms in Kähler geometry
For Kaehler manifolds we explicitly determine the solution to the conformal Killing form equation in middle degree. In particular, we complete the classification of conformal Killing forms on compact Kaehler manifolds. We give the first examples of conformal Killing forms on Kaehler manifolds not coming from Hamiltonian 2-forms. These are supported by Calabi type manifolds over a Kaehler Einstein base. In this set up we also give structure results and examples for the closely related class of Hermitian Killing forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信