{"title":"基于FPGA的硬件粗糙集处理器并行结构在大数据集中寻核","authors":"M. Kopczynski, T. Grzes","doi":"10.2478/jaiscr-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"11 1","pages":"99 - 110"},"PeriodicalIF":3.3000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hardware Rough Set Processor Parallel Architecture in FPGA for Finding Core in Big Datasets\",\"authors\":\"M. Kopczynski, T. Grzes\",\"doi\":\"10.2478/jaiscr-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":\"11 1\",\"pages\":\"99 - 110\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2478/jaiscr-2021-0007\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2021-0007","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hardware Rough Set Processor Parallel Architecture in FPGA for Finding Core in Big Datasets
Abstract This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.
期刊介绍:
Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.