M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura
{"title":"超细气泡对作物生长的促进或抑制作用取决于气泡浓度和作物种类","authors":"M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura","doi":"10.1080/1343943X.2021.1960175","DOIUrl":null,"url":null,"abstract":"ABSTRACT Previous research into the effects of ultrafine bubbles (UFB) on plant growth have been contradictory. To facilitate the resolution of these contradictions, the aim of the present study was to clarify the interspecific differences in growth responses among cereal/leguminous species under different levels of UFB concentrations. Seedlings of six species were grown hydroponically with three different UFB concentrations and two levels of plant nutrition to evaluate biomass and elongation growth. UFB growth promotion under zero-nutrition occurred in all species. Interspecific differences were noted in response to differing UFB concentration levels. Rice and soybean had higher above-ground biomass production at both low and high concentrations. Conversely, other crops exhibited promoted growth at only one of the concentrations. Negative effects occurred in full nutrient conditions except for root elongation. This study demonstrated that growth-promoting effects with UFB depended on the crop species being tested and the concentration of UFB used. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"25 1","pages":"78 - 83"},"PeriodicalIF":1.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1343943X.2021.1960175","citationCount":"5","resultStr":"{\"title\":\"Promotive or suppressive effects of ultrafine bubbles on crop growth depended on bubble concentration and crop species\",\"authors\":\"M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura\",\"doi\":\"10.1080/1343943X.2021.1960175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Previous research into the effects of ultrafine bubbles (UFB) on plant growth have been contradictory. To facilitate the resolution of these contradictions, the aim of the present study was to clarify the interspecific differences in growth responses among cereal/leguminous species under different levels of UFB concentrations. Seedlings of six species were grown hydroponically with three different UFB concentrations and two levels of plant nutrition to evaluate biomass and elongation growth. UFB growth promotion under zero-nutrition occurred in all species. Interspecific differences were noted in response to differing UFB concentration levels. Rice and soybean had higher above-ground biomass production at both low and high concentrations. Conversely, other crops exhibited promoted growth at only one of the concentrations. Negative effects occurred in full nutrient conditions except for root elongation. This study demonstrated that growth-promoting effects with UFB depended on the crop species being tested and the concentration of UFB used. Graphical abstract\",\"PeriodicalId\":20259,\"journal\":{\"name\":\"Plant Production Science\",\"volume\":\"25 1\",\"pages\":\"78 - 83\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1343943X.2021.1960175\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Production Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1343943X.2021.1960175\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2021.1960175","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Promotive or suppressive effects of ultrafine bubbles on crop growth depended on bubble concentration and crop species
ABSTRACT Previous research into the effects of ultrafine bubbles (UFB) on plant growth have been contradictory. To facilitate the resolution of these contradictions, the aim of the present study was to clarify the interspecific differences in growth responses among cereal/leguminous species under different levels of UFB concentrations. Seedlings of six species were grown hydroponically with three different UFB concentrations and two levels of plant nutrition to evaluate biomass and elongation growth. UFB growth promotion under zero-nutrition occurred in all species. Interspecific differences were noted in response to differing UFB concentration levels. Rice and soybean had higher above-ground biomass production at both low and high concentrations. Conversely, other crops exhibited promoted growth at only one of the concentrations. Negative effects occurred in full nutrient conditions except for root elongation. This study demonstrated that growth-promoting effects with UFB depended on the crop species being tested and the concentration of UFB used. Graphical abstract
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.