Gromov-Hausdorff距离的分支测地线

Pub Date : 2021-08-16 DOI:10.1515/agms-2022-0136
Yoshito Ishiki
{"title":"Gromov-Hausdorff距离的分支测地线","authors":"Yoshito Ishiki","doi":"10.1515/agms-2022-0136","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we first evaluate topological distributions of the sets of all doubling spaces, all uniformly disconnected spaces, and all uniformly perfect spaces in the space of all isometry classes of compact metric spaces equipped with the Gromov–Hausdorff distance.We then construct branching geodesics of the Gromov–Hausdorff distance continuously parameterized by the Hilbert cube, passing through or avoiding sets of all spaces satisfying some of the three properties shown above, and passing through the sets of all infinite-dimensional spaces and the set of all Cantor metric spaces. Our construction implies that for every pair of compact metric spaces, there exists a topological embedding of the Hilbert cube into the Gromov– Hausdorff space whose image contains the pair. From our results, we observe that the sets explained above are geodesic spaces and infinite-dimensional.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Branching Geodesics of the Gromov-Hausdorff Distance\",\"authors\":\"Yoshito Ishiki\",\"doi\":\"10.1515/agms-2022-0136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we first evaluate topological distributions of the sets of all doubling spaces, all uniformly disconnected spaces, and all uniformly perfect spaces in the space of all isometry classes of compact metric spaces equipped with the Gromov–Hausdorff distance.We then construct branching geodesics of the Gromov–Hausdorff distance continuously parameterized by the Hilbert cube, passing through or avoiding sets of all spaces satisfying some of the three properties shown above, and passing through the sets of all infinite-dimensional spaces and the set of all Cantor metric spaces. Our construction implies that for every pair of compact metric spaces, there exists a topological embedding of the Hilbert cube into the Gromov– Hausdorff space whose image contains the pair. From our results, we observe that the sets explained above are geodesic spaces and infinite-dimensional.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文首先计算了具有Gromov-Hausdorff距离的紧度量空间的所有等距类空间中的所有倍空间、所有一致不连通空间和所有一致完美空间集合的拓扑分布。然后,我们构造了Hilbert立方连续参数化的Gromov-Hausdorff距离的分支测地线,通过或避开满足上述三个性质的所有空间的集合,并通过所有无限维空间的集合和所有康托度量空间的集合。我们的构造表明,对于每一对紧化度量空间,Hilbert立方体都存在一个拓扑嵌入到Gromov - Hausdorff空间中,该空间的像包含了这对紧化度量空间。从我们的结果中,我们观察到上述解释的集合是测地线空间和无限维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Branching Geodesics of the Gromov-Hausdorff Distance
Abstract In this paper, we first evaluate topological distributions of the sets of all doubling spaces, all uniformly disconnected spaces, and all uniformly perfect spaces in the space of all isometry classes of compact metric spaces equipped with the Gromov–Hausdorff distance.We then construct branching geodesics of the Gromov–Hausdorff distance continuously parameterized by the Hilbert cube, passing through or avoiding sets of all spaces satisfying some of the three properties shown above, and passing through the sets of all infinite-dimensional spaces and the set of all Cantor metric spaces. Our construction implies that for every pair of compact metric spaces, there exists a topological embedding of the Hilbert cube into the Gromov– Hausdorff space whose image contains the pair. From our results, we observe that the sets explained above are geodesic spaces and infinite-dimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信